首页|混合U型网络与Transformer的图像去模糊

混合U型网络与Transformer的图像去模糊

扫码查看
针对现有去模糊方法不能有效地恢复图像精细细节的问题,提出了一种混合U型网络与Transformer的图像去模糊方法.首先,使用一个多尺度特征提取模块提取图像的浅层特征信息.然后,通过一个含逐级特征增强模块的层级嵌套U型子网络,在保留图像细节信息的同时获取图像深层特征信息.再次,构建了一个局部-全局残差细化模块,通过卷积神经网络和Swin Transformer之间的信息交互充分提取全局和局部信息,并实现特征信息的进一步细化.最后,使用一个1×1卷积层进行特征重建.所提方法在GoPro数据集上的实验结果显示,图像的峰值信噪比和结构相似度均值分别为32.92和0.964,均优于其他对比方法.实验结果表明,所提方法可以有效地去除模糊,重建出具有丰富细节的潜在清晰图像.
Hybrid U-shaped network and Transformer for image deblurring
To address the problem that existing deblurring methods cannot effectively restore fine de-tails of images,an image deblurring method combining a U-shaped network and Transformer is pro-posed.Firstly,a multi-scale feature extraction module is used to extract shallow feature information from the image.Then,a hierarchical nested U-shaped subnet with a stepwise feature enhancement mod-ule is employed to obtain deep feature information while preserving image detail information.Next,a local-global residual refinement module is constructed,which fully extracts global and local information through information interaction between convolutional neural networks and Swin Transformer,and fur-ther refines the feature information.Finally,a 1×1 convolutional layer is used for feature reconstruc-tion.The proposed method achieves a peak signal-to-noise ratio(PSNR)of 32.92 and a structural simi-larity index mean(SSIM)of 0.964 on the GoPro dataset,both outperforming other comparative meth-ods.Experimental results demonstrate that the proposed method can effectively remove blur and recon-struct a potentially clear image with rich details.

image deblurringdetailed informationhierarchical nested U-shaped subnetTransform-ermulti-scale feature

陈清江、邵菲、王炫钧

展开 >

西安建筑科技大学理学院,陕西西安 710055

图像去模糊 细节信息 层级嵌套U型子网络 Transformer 多尺度特征

国家自然科学基金国家自然科学基金陕西省自然科学基础研究计划

12202332619023042021JQ-495

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(10)