首页|基于优化特征堆叠与集成学习的车联网入侵检测模型

基于优化特征堆叠与集成学习的车联网入侵检测模型

扫码查看
随着车载网络复杂性的提高和车辆与外界连接方式多样性的丰富,车联网面临的网络安全风险大幅度上升。针对现有入侵检测的特征提取不充分、模型分类不够精确等问题,提出了一种基于特征堆叠与集成学习的车联网入侵检测模型。该模型通过将一维数据流量按照特征步进行切分,在第三维度上进行堆叠转化为图像,并使用VGG19模型提取特定类型的特征,Xception模型捕获通道内和通道间的信息,Inception模型处理复杂类别图像获取多尺度信息,3个模型集成CS-IDS模型。在2个开源的车联网数据集Car-Hacking和流量数据集CIC-IDS2017上测试了该模型,分别获得了 99。97%和96。44%的F1分数,且该模型可在12 ms内完成单条流量的快速检测,表明了所提CS-IDS模型的有效性和可用性。
An intrusion detection model for vehicular networks based on optimized feature stacking and ensemb
With the increasing complexity of in-vehicle networks and the diversity of vehicle-to-everything(V2X)connections,the cybersecurity risks faced by the internet of vehicles(IoV)have sig-nificantly escalated.Addressing the issues of insufficient feature extraction and inaccurate model classifi-cation in existing intrusion detection systems,a novel intrusion detection model for IoV based on feature stacking and ensemble learning is proposed.This model slices one-dimensional data traffic into segments based on feature steps,stacks them into images in the third dimension,and utilizes the VGG19 model to extract specific types of features,the Xception model to capture intra-channel and inter-channel informa-tion,and the Inception model to process complex image categories and obtain multi-scale information.Th ese three models are then integrated into the CS-IDS model.The proposed model was tested on two open-source IoV datasets,Car-Hacking and the traffic dataset CIC-IDS2017,achieving F1 scores of 99.97%and 96.44%,respectively.Moreover,the model can complete rapid detection of a single traffic flow within 12 ms,demonstrating the effectiveness and availability of the proposed CS-IDS model.

intrusion detectionensemble learningfeature stackinginternet of vehicles(IoV)

刘沛、刘昌华、林俏伶

展开 >

武汉轻工大学数学与计算机学院,湖北武汉 430048

入侵检测 集成学习 特征堆叠 车联网

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(12)