首页|基于模板更新和重检测的长时目标跟踪研究

基于模板更新和重检测的长时目标跟踪研究

扫码查看
为解决长时目标跟踪场景中由于遮挡、超出视野导致的 目标频繁丢失与重现的问题,设计了一种基于模板更新和重检测的长时目标跟踪算法(LTUSiam)。首先,在跟踪器SiamRPN的基础上,引入三级级联的门控循环单元对目标状态进行判断,选择合适的时机自适应更新模板信息。其次,提出一种基于模板匹配的重检测算法,使用候选区域提取模块重定位目标位置和大小,使用评价得分序列对目标丢失的情况进行判断,以确定下一帧的跟踪状态。实验结果显示,LTUSiam在LaSOT数据集上的成功率和准确率分别达到了 0。566和0。556,在VOT 2018_LT数据集上的F1值为0。644,表明其在处理目标丢失与重现问题时有更好的鲁棒性,有效地改善了长时跟踪的性能。
Long-term object tracking based on template update and redetection
In order to solve the problem of frequent disappearing and reappearing of targets due to oc-clusion and out of view in long-term target tracking scenes,a long-term target tracking algorithm based on update and redetection(LTUSiam)is designed.Firstly,based on the basic tracker Siamese region proposed network(SiamRPN),a three-level cascade gated cycle unit is introduced to judge the target state and choose the right time to update the template information adaptively.Secondly,a redetection algorithm based on template matching is proposed.The candidate region extraction module is used to re-locate the target position and size,and the evaluation score sequence is used to judge the target loss to determine the tracking state of the next frame.Experiments show that the success rate and precision of LTUSiam on LaSOT dataset reach 0.566 and 0.556 respectively,and the F1-score of LTUSiam on VOT2018_LT dataset is 0.644,which has better robustness in dealing with target loss recurrence prob-lem,and effectively improves the performance of long-term tracking.

long-term trackingSiamese networktemplate updateredetection

徐淑萍、卫浩波、孙洋洋、万亚娟

展开 >

西安工业大学计算机科学与工程学院,陕西西安 710021

长时跟踪 孪生网络 模板更新 重检测

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(12)