计算机工程与科学2024,Vol.46Issue(12) :2227-2238.DOI:10.3969/j.issn.1007-130X.2024.12.014

西夏文字的多层掩码识别方法

A multi-layer mask recognition method for Tangut characters

马金林 闫琦 马自萍
计算机工程与科学2024,Vol.46Issue(12) :2227-2238.DOI:10.3969/j.issn.1007-130X.2024.12.014

西夏文字的多层掩码识别方法

A multi-layer mask recognition method for Tangut characters

马金林 1闫琦 2马自萍3
扫码查看

作者信息

  • 1. 北方民族大学计算机科学与工程学院,宁夏银川 750021;图像图形智能信息处理国家民委重点实验室,宁夏银川 750021
  • 2. 北方民族大学计算机科学与工程学院,宁夏银川 750021
  • 3. 北方民族大学数学与信息科学学院,宁夏银川 750021
  • 折叠

摘要

针对现有方法对模糊、残缺西夏文字识别能力较差的问题,提出西夏文字识别模型MMS-FTR.首先,提出多层掩码学习策略,分层次提取字符关键特征,帮助模型更有效地理解西夏文字内部结构,提高对复杂西夏文字的特征描述能力.其次,设计多尺度特征融合模块,以提取更丰富的多尺度特征.然后,提出通道自适应注意力模块,更好地选择和关注特定通道的信息,并设计掩码注意力模块改善模型感知能力.最后,设计特征增强模块,对网络进行多层次特征优化,并进行深层次特征增强.MMSFTR通过4个模块的协同作业,使得模型达到了预期效果.实验结果显示:MMSFTR在TCD-E数据集上达到99.40%的识别准确率,有效提升了对模糊、残缺西夏文字的识别效果.

Abstract

Aiming at the problem of poor recognition ability of existing methods for fuzzy and mutila-ted Tangut characters,a Tangut character recognition model MMSFTR is proposed.Firstly,a multi-layer mask learning strategy is introduced to extract key character features in a hierarchical manner,as-sisting the model in understanding the internal structure of the Tangut characters more efficiently,and improving its ability to describe complex features of Tangut characters.Secondly,a multi-scale feature fusion module is designed to extract richer multi-scale features.Then,a channel adaptive attention mod-ule is proposed to better select and focus on information from specific channels.A mask attention mod-ule is also designed to improve the model's perception capabilities.Finally,a feature enhancement mod-ule is designed to optimize multi-level features of the network and enhance deep-level features.Through the collaborative work of these 4 modules,MMSFTR achieves the desired results.Experimental results show that MMSFTR achieves a recognition accuracy of 99.40%on the TCD-E dataset,effectively en-hancing the recognition effect of fuzzy and mutilated Tangut characters.

关键词

西夏文字识别/多尺度特征融合/掩码学习/逆残差块

Key words

Tangut character recognition/multi-scale feature fusion/mask learning/inverse residual block

引用本文复制引用

出版年

2024
计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
段落导航相关论文