首页|基于通道筛选和自适应熵阈值的眼电伪迹自动去除算法

基于通道筛选和自适应熵阈值的眼电伪迹自动去除算法

扫码查看
为了提高脑电信号中眼电伪迹去除的效果,提出一种结合快速独立成分分析(FastICA)和启发式小波阈值去噪(HWT)算法,并以模糊熵为眼电伪迹判别标准的眼电伪迹自动去除算法。首先,采用通道筛选算法对原始脑电信号进行降维处理,以提高计算效率;随后利用FastICA算法将筛选后的脑电信号分解为独立分量;其次,通过模糊熵分析识别含有眼电伪迹的独立分量;再次,采用HWT算法剔除该分量的眼电伪迹成分,保留有用的脑电信号;最后,进行逆小波变换和逆ICA重构,得到不含伪迹的脑电信号。通过在数据集BCI Competition IV上的实验验证了该算法。结果表明,相较于现有算法,所提算法在多个性能指标上均表现出色,信噪比(SNR)相较于现有基于峰度的伪迹识别算法提高约12%。
An automatic ocular artifact removal algorithm based on channel selection and adaptive entropy threshold
To enhance the effectiveness of removing ocular artifacts from electroencephalogram(EEG)signals,an automatic ocular artifact removal algorithm is proposed that combines fast indepen-dent component analysis(FastICA)and heuristic wavelet thresholding(HWT),using fuzzy entropy as the criterion for identifying ocular artifacts.Firstly,a channel selection algorithm is employed to reduce the dimensionality of the original EEG signals,thereby improving computational efficiency.Subsequent-ly,the FastICA algorithm is utilized to decompose the selected EEG signals into independent compo-nents.Then,fuzzy entropy analysis is conducted to identify the independent components containing ocu-lar artifacts.Next,the HWT algorithm is applied to eliminate the ocular artifact components from those identified components while preserving the useful EEG signals.Finally,inverse wavelet transform and inverse ICA reconstruction are performed to obtain the artifact-free EEG signals.The proposed algo-rithm was validated using the BCI Competition IV dataset.The results indicate that,compared to exist-ing algorithms,this algorithm performs well across multiple performance metrics,with a signal-to-noise ratio(SNR)improvement of approximately 12%compared to existing kurtosis-based artifact identification algorithms.

electroencephalogram(EEG)signalchannel selectionfast independent component analy-sis(FastICA)ocular artifactartifact removal

李易霖、周彪

展开 >

江南大学物联网工程学院,江苏无锡 214122

脑电信号 通道筛选 快速独立成分分析 眼电伪迹 伪迹去除

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(12)