首页|基因表达式编程算法的改进

基因表达式编程算法的改进

扫码查看
为解决基因表达式编程算法(gene expression programming,GEP)存在的收敛速度慢、早熟、易陷入局部极值点等问题,提出3个改进方法.设计自适应进化参数,实现根据进化代数和个体适应度值在群体中所处的排名,动态调整重组率和变异率;将种群按年龄分层繁衍,进一步扩大基因搜索空间并避免早熟;将GEP移植到Spark分布式框架,进行并行计算,使算法能在较短时间内处理大量搜索任务.实验结果表明,相比传统GEP,改进后的算法有更快的收敛速度、更高预测精度和稳定性.
Improvement of gene expression programming algorithm
To solve the problems of gene expression programming (GEP),such as slow convergence rate,premature convergence and easiness to fall into local extreme points,three improved methods were proposed.The adaptive evolutionary parameter was designed.According to the number of generations and the ranking of fitness value in the population,the recombination rate and mutation rate were dynamically adjusted.To further expand the search space and avoid premature,the population was stratified by their age.GEP was ported to the Spark framework for distributed parallel computing,so that the algorithm dealt with a large number of search tasks in a relatively short period of time.Experimental results show that,compared with the traditional GEP,the improved algorithm has higher convergence speed,prediction accuracy and stability.

gene expression programmingadaptive evolutionlayered population structureSpark distributed computingprediction

蒋宗礼、王光亮

展开 >

北京工业大学 计算机学院,北京 100124

基因表达式编程算法 自适应进化 分层模型 Spark分布式计算 预测

2017

计算机工程与设计
中国航天科工集团二院706所

计算机工程与设计

CSTPCD北大核心
影响因子:0.617
ISSN:1000-7024
年,卷(期):2017.38(12)
  • 1
  • 1