首页|基于轻量化随机森林算法的物联网流量分类

基于轻量化随机森林算法的物联网流量分类

Internet of things traffic classification based on lightweight random forest algorithm

扫码查看
为解决物联网设备资源受限、平衡流量检测精度与时间开销等问题,提出一种FastSplit-RF(random forest with fast split)的轻量化分类算法.针对物联网流量设计一个通用的特征提取流程,在随机森林算法基础上,使用多臂赌博机策略代替节点分裂的遍历过程,实现对节点的快速分割,完成高效、轻量化的物联网流量分类.实验验证,FastSplit-RF相较随机森林算法,在准确率提升了2.45%的同时,检测速度增快了62.16%,内存占用减小了48.68%.
To address challenges such as limited resources in IoT devices and prolonged delays in traffic detection and classifica-tion,a lightweight classification algorithm named FastSplit-RF(random forest with fast split)was introduced.A universal fea-ture extraction process for IoT traffic was designed,and on the basis of the random forest algorithm,a multi-armed bandit stra-tegy was employed to replace the traversal process during node splitting.Rapid segmentation of nodes was enabled,allowing efficient and lightweight IoT traffic classification.Experimental results indicate that,compared to the random forest algorithm,a 2.45%improvement in accuracy is achieved using FastSplit-RF,accompanied by a 62.16%increase in detection speed and a 48.68%reduction in memory usage.

malicious trafficIoT securityrandom forestslightweight algorithmstraffic classificationmulti-classificationintrusion detection

余伟良、高见、王润田

展开 >

中国人民公安大学信息网络安全学院,北京 100038

公安部安全防范与风险评估重点实验室,北京 102623

恶意流量 物联网安全 随机森林 轻量化算法 流量分类 多分类 入侵检测

2024

计算机工程与设计
中国航天科工集团二院706所

计算机工程与设计

CSTPCD北大核心
影响因子:0.617
ISSN:1000-7024
年,卷(期):2024.45(12)