首页|基于混合双向LSTM的中间人攻击检测方法

基于混合双向LSTM的中间人攻击检测方法

Man-in-the-middle attack detection method based on hybrid bidirectional LSTM

扫码查看
针对局域网中基于ARP协议的中间人攻击检测准确率低、误报率高、泛化性差的问题,提出一种结合极端随机树分类器(ETC)和改进注意力机制(IAM)的双向长短时记忆网络(BiLSTM)的组合模型.利用ETC提取数据特征,通过改进的注意力机制模块处理中间人攻击流量时间序列信息,将组合特征输入BiLSTM实现对中间人攻击的检测.实验结果表明,在Kitsune数据集中,该模型的中间人攻击检测准确率达99.98%,在自建Ooter数据集中为99.94%.相较于主流的中间人攻击检测算法,该方法具有更高的准确率、更低的误报率及更好的泛化性.
To address the challenges of low detection accuracy,high false positive rates,and poor generalization in detecting man-in-the-middle attacks based on the ARP protocol within a local area network,a combined model was proposed.An integration of an extreme random forest classifier(ETC)and an improved attention mechanism(IAM)with a bidirectional long short-term memory network(BiLSTM)were combined.ETC was utilized to extract data features.The time-series information of man-in-the-middle attack traffic was processed through the improved attention mechanism module.The combined features were input into BiLSTM to achieve the effective detection of man-in-the-middle attacks.Experimental results demonstrate that on the Kit-sune dataset,the model achieves the detection accuracy of 99.98%,and on a custom Ooter dataset,it reaches 99.94%.In com-parison to mainstream man-in-the-middle attack detection algorithms,this approach exhibits higher accuracy,lower false positive rates,and superior generalization.

man-in-the-middle attackaddress resolution protocoldeep learningbidirectional long short-term memoryatten-tion mechanismextra trees classifiermodel fusion

郭晓军、梁添鑫、靳玮琨、孙雨生

展开 >

西藏民族大学信息工程学院,陕西咸阳 712082

西藏民族大学西藏网络空间治理研究基地,陕西咸阳 712082

西藏民族大学 西藏自治区光信息处理与可视化技术重点实验室,陕西 咸阳 712082

中间人攻击 地址解析协议 深度学习 双向长短时记忆网络 注意力机制 极端随机树分类器 模型融合

2024

计算机工程与设计
中国航天科工集团二院706所

计算机工程与设计

CSTPCD北大核心
影响因子:0.617
ISSN:1000-7024
年,卷(期):2024.45(12)