首页|基于可靠性估计的半监督地震相识别方法

基于可靠性估计的半监督地震相识别方法

Semi-supervised seismic facies identification method based on reliability estimation

扫码查看
针对地震相人工注释耗时、传统半监督方法易受不可靠伪标签干扰等缺点,提出一种基于可靠性估计的半监督地震相识别方法.使用可靠性估计网络过滤地震相伪标签中的不可靠区域,避免由错误监督信号引起的认知偏差,基于平均教师模型扩展多种类型的辅助解码器用于一致性正则化,进一步提高模型的泛化性和鲁棒性.在荷兰F3地震数据集上的实验结果表明,使用少量的标注样本MIOU可达90.33%,有效提升了容易分类混淆的地震相的识别性能.
Aiming at the disadvantages of time-consuming manual annotation of seismic facies and the susceptibility of traditional semi-supervised methods to interference from unreliable pseudo-labels,a semi-supervised seismic facies identification method based on reliability estimation was proposed.A reliability estimation network was utilized to filter unreliable regions in pseudo-labels of seismic facies to avoid cognitive bias caused by erroneous supervision signals and extend multi-type auxiliary decoders based on the mean teacher model for consistency regularization to improve generalization and robustness of the model.Experi-mental results on the Netherlands F3 dataset demonstrate that using a few labeled samples,MIOU can reach 90.33%,effectively improves the identification performance of seismic facies that are easily confused by classification.

seismic facies identificationdeep learningsemi-supervised learningsemantic segmentationself-trainingconsis-tency regularizationreliability estimation

李克文、刘文龙、李国庆、姚贤哲、蒋衡杰

展开 >

中国石油大学(华东)计算机科学与技术学院,山东青岛 266580

地震相识别 深度学习 半监督学习 语义分割 自训练 一致性正则化 可靠性估计

2024

计算机工程与设计
中国航天科工集团二院706所

计算机工程与设计

CSTPCD北大核心
影响因子:0.617
ISSN:1000-7024
年,卷(期):2024.45(12)