首页|改进RT-DETR的无人机图像目标检测算法

改进RT-DETR的无人机图像目标检测算法

扫码查看
针对轻小型无人机图像目标检测中由于目标灵活多样、环境复杂多变导致的检测精度低等问题,提出基于改进RT-DETR无人机目标检测算法。综合考虑轻量级SimAM注意力和倒置残差模块改进ResNet-r18主干网络,提高目标检测模型的特征提取能力。采用级联分组注意力机制优化倒置残差模块和特征交互模块,提升特征选择能力,实现目标检测信息的精细化获取。颈部网络中引入160×160检测层,提升特征融合阶段小目标的感知能力。基于VisDrone2019数据集的实验结果表明,改进后的模型具有更低的参数量和更高的检测精度。在Alver Lab Ulastirma和HIT-UAV数据集上进一步验证了改进方法的有效性和鲁棒性。
Improved Target Detection Algorithm for UAV Images with RT-DETR
This paper proposes an improved RT-DETR algorithm for unmanned aerial vehicle(UAV)target detection in light and small-sized UAV image targets.Addressing issues such as low detection accuracy due to the flexible and diverse nature of targets and complex and variable environments,the proposed method enhances the feature extraction capability of the detection model by integrating lightweight SimAM attention and inverted residual modules into the ResNet-r18 backbone network.Furthermore,a cascaded group attention mechanism is employed to optimize the inverted residual modules and feature interaction modules,improving feature selection capability and achieving refined acquisition of target detection information.Additionally,a 160×160 detection layer is introduced in the neck network to enhance the perception capability of small targets during the feature fusion stage.Finally,the experimental results based on the VisDrone2019 dataset show that the improved model has lower number of parameters and higher detection accuracy.Further experiments on the Alver_Lab_Ulastirma and HIT-UAV datasets validate the effectiveness and robustness of the proposed improvements.

small target detectiondetection Transformer(DETR)attention mechanismTransformerresidual link

姜贸翔、司占军、王晓喆

展开 >

天津科技大学人工智能学院,天津 300457

北京航空航天大学无人系统研究院,北京 100191

小目标检测 DETR 注意力机制 Transformer 残差链接

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(1)