首页|改进YOLOv8的无人机航拍图像目标检测算法

改进YOLOv8的无人机航拍图像目标检测算法

扫码查看
针对无人机航拍图像存在多个小目标聚集、目标尺度变化大的问题,提出一种改进YOLOv8的目标检测算法TS-YOLO(tiny and scale-YOLO)。在主干部分去除冗余的特征提取层,设计了一种高效特征提取模块(effi-cient feature extraction module,EFEM),避免小目标特征消失在冗余信息中。在颈部设计了一种双重跨尺度加权特征融合方法(dual cross-scale weighted feature-fusion,DCWF),融合多尺度信息的同时抑制噪声干扰,提升特征表达能力。通过构建一种参数共享检测头(parameter-shared detection header,PSDH),使回归和分类任务实现参数共享,保证检测精度的同时有效降低了模型的参数量。所提模型在VisDrone-2019数据集上的精度(P)和召回率(R)分别达到54。0%、42。5%;相比于原始YOLOv8s模型,mAP50提高了 5。0个百分点,达到44。5%,且参数量减少了 55。8%,仅有4。94×106;在DOTAv1。0遥感数据集上,mAP50达到71。9%,仍具有较好的泛化能力。
Target Detection Algorithm for UAV Images Based on Improved YOLOv8
Aiming at the problems of multiple small targets aggregation and large target scale variation in UAV aerial images,an improved YOLOv8 target detection algorithm named TS-YOLO(tiny and scale-YOLO)is proposed.Firstly,the redundant feature extraction layer is removed in the backbone part,and an efficient feature extraction module(EFEM)is designed to avoid small target features disappearing in redundant information.Secondly,a dual cross-scale weighted feature-fusion(DCWF)method is adopted in the neck,which fuses the multi-scale information and suppresses the noise interference for improving the feature expression ability.Finally,by constructing a parameter-shared detection header(PSDH),the regression and classification is took to realize parameter sharing,which ensures the detection accuracy and effectively reduces the number of parameters in the model.The precision(P)and recall(R)of the proposed model on the VisDrone-2019 dataset reach to 54.0%and 42.5%,respectively;compared with the original YOLOv8s model,the mAP50 is improved by 5.0 percentage points to 44.5%and the parameter quantity is reduced by 55.8%to only 4.94 ×106;on the DOTAv1.0 remote sensing dataset,the mAP50 reaches 71.9%,which still has good generalization ability.

target detectionunmanned aerial vehicles imagesYOLOv8small targetfeature fusion

梁燕、何孝武、邵凯、陈俊宏

展开 >

重庆邮电大学 通信与信息工程学院,重庆 400065

信号与信息处理重庆市重点实验室,重庆 400065

目标检测 无人机航拍图像 YOLOv8 小目标 特征融合

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(1)