首页|融合快速边缘注意力的Transformer跟踪算法

融合快速边缘注意力的Transformer跟踪算法

扫码查看
针对长期目标跟踪中出现模型退化和跟踪漂移的问题,提出了一种融合快速边缘注意力的Transformer跟踪算法TransFEA(fast edge attention on Transformer)。使用 ResNet-50作为 Siamese 网络的骨干网络,并在其每个残差块后端引入注意力网络进行特征提取,增强目标的关键信息和全局信息;边缘注意力网络(edge attention net-work,EA)提取模板与搜索区域的特征向量,快速注意力网络(fast attention network,FA)计算注意响应值,确定两个区域的相似度,以此调整目标位置。设计多层感知器预测边界框,避免过多超参数,使跟踪器实现了准确性与轻量化的平衡。实验结果表明,TransFEA在LaSOT数据集上成功率和准确率分别为65。3%、69。1%,运行可以达到90 FPS,提高了长期跟踪的成功率和准确率。
Transformer Tracking Algorithm Integrating Fast Edge Attention
In order to solve the problems of model degradation and tracking drift in long-term target tracking,a Trans-former tracking algorithm TransFEA(fast edge attention on Transformer)that integrates fast edge attention is proposed.It uses ResNet-50 as the backbone network of the Siamese network,and introduces an attention network at the back end of each residual block for feature extraction to enhance the key information and global information of the target;edge atten-tion network(EA)extracts the feature vectors of the templates and the search area,fast attention network(FA)calculates the attention response value and determines the similarity between the two areas to adjust the target position.Designing a multi-layer perceptron to predict bounding boxes and avoid excessive hyperparameters enables the tracker to achieve a balance between accuracy and lightweight.Experimental results show that the success rate and accuracy rate of TransFEA on the LaSOT data set are 65.3%and 69.1%respectively,and the operation can reach 90 FPS,which improves the success rate and accuracy rate of long-term tracking.

Transformer networkedge attention networkfast attention networkmulti-layer perceptron

薛紫涵、葛海波、王淑贤、安玉、杨雨迪

展开 >

西安邮电大学 电子工程学院,西安 710121

Transformer网络 边缘注意力网络 快速注意力网络 多层感知器

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(1)