首页|改进YOLOv7的结直肠息肉检测算法

改进YOLOv7的结直肠息肉检测算法

扫码查看
计算机辅助诊断对提高息肉诊断准确率和降低结直肠癌死亡率至关重要,但息肉形态各异,息肉类似物和肠内的复杂环境导致目前的方法存在较多的误诊和漏诊。因此提出了一种改进的YOLOv7结直肠息肉检测算法(YOLOv7-IDH),使用含隐式知识的高效解耦头,充分利用隐含信息并防止分类和回归任务之间相互干扰;引入全局注意力机制,增强模型对浅层特征的提取能力;对SPPCSPC模块进行优化,减少模型参数和提高收敛速度。实验结果表明,改进模型在组合数据集上的F1分数和mAP@0。5分别达到了 94。8%和97。1%,可以满足息肉自动检测的要求。
Improved YOLOv7 Algorithm for Colorectal Polyp Detection
Computer-aided diagnosis is essential to improve polyp diagnostic accuracy and reduce colorectal cancer mortality,but the variety of polyp morphologies,polyp analogs and the complex environment in the bowel lead to more misdiagnosis and underdiagnosis with current methods.Therefore,an improved YOLOv7 colorectal polyp detection algo-rithm(YOLOv7-IDH)is proposed,which firstly,efficient decoupled heads with implicit knowledge are used to make full use of the implicit information and to prevent mutual interference between classification and regression tasks;then,global attention mechanism is introduced to enhance the model's capability of extracting shallow features;finally,the SPPCSPC module is optimized to reduce the model parameters and to improve the convergence speed.The experimental results show that the Fl score and mAP@0.5 of the improved model on the combined dataset reach 94.8%and 97.1%,respectively,which can meet the requirements for automatic polyp detection.

polyp detectiondeep learningcomputer-aided diagnosisdecoupled headattention mechanism

薛钦原、胡珊珊、胡新军、严松才

展开 >

四川轻化工大学机械工程学院,四川 宜宾 643000

四川省人民医院消化内科中心,成都 610072

息肉检测 深度学习 计算机辅助诊断 解耦头 注意力机制

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(1)