首页|基于多尺度边缘感知和增强的息肉图像分割

基于多尺度边缘感知和增强的息肉图像分割

扫码查看
针对结直肠图像中息肉尺度差异大、边界不清晰以及内窥镜图片反光等问题,提出了一种基于边缘感知和边界增强的网络模型。以金字塔结构提取多层特征,使用集中引导的边缘感知聚合策略,利用中低层和高层的互补信息来获取第一个轮廓掩码。使用了分层多尺度模块对骨干网络后三层进行特征提取,以适应不同大小息肉特征。提出正逆向综合关注单元,通过局部特征保留和轮廓掩码合并,挖掘出更多轮廓掩码的边缘信息。分别在Kvasir、CVC-ClinicalDB、ETIS、CVC-ColonDB和CVC-300五个流行的息肉分割数据集上进行实验,与目前主流的几种息肉分割方法比较三个指标,其中平均Dice和平均IoU都有所提高,MAE有所降低,性能效果明显优于其他方法。特别是,在ETIS数据集上平均Dice系数达到了 0。729 7,比之前最先进的方法提升了 0。042 9。
Polyp Image Segmentation Based on Multi-Scale Edge Perception and Enhancement
In order to solve the problems of large polyp scale differences,unclear boundaries and reflection of endoscopic images in colorectal images,this paper proposes a network model based on edge perception and boundary enhancement.Firstly,the pyramid structure is used to extract multi-layer features,and the first active contour mask is obtained by using the centrally guided edge-aware aggregation strategy and the complementary information of the middle and low layers and the upper layers.Secondly,the hierarchical multi-scale module is used to extract the features of the last three layers of the backbone network.Finally,the forward and reverse integrated attention unit is proposed,and more edge information of the contour mask is mined through local feature preservation and contour mask merging.Experiments are carried out on five popular polyp segmentation datasets,namely Kvasir,CVC-ClinicalDB,ETIS,CVC-ColonDB and CVC-300,and the three indexes are compared with several mainstream polyp segmentation methods,among which the average Dice coefficient and average intersection union ratio are improved,the average absolute error is reduced,and the performance effect is significantly better than that of other methods.In particular,the average Dice coefficient on the ETIS dataset reaches 0.729 7,an improvement of 0.042 9 over the previous state-of-the-art method.

polyp segmentationcontour maskmulti-scaleattention

杨瑞君、陈丽叶、程燕

展开 >

上海应用技术大学计算机科学与信息工程学院,上海 201418

华东政法大学刑事法学院,上海 201620

息肉分割 轮廓掩码 多尺度 注意力

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(1)