首页|改进的YOLOv8n轻量化景区行人检测方法研究

改进的YOLOv8n轻量化景区行人检测方法研究

扫码查看
针对景区人流量大、人员密集,而现有目标检测算法对于遮挡目标和小目标检测效率低且模型参数量大等问题,提出基于YOLOv8n的轻量化景区行人检测算法SSC-YOLOv8n。提出空间和通道重建注意力卷积SCC2fEMA模块,以显著减少模型参数量,从而提升模型的检测速度。采用精细的slim-neck范式,通过GSConv和V0V-GSCSP模块,在有效降低模型参数量的同时,提升模型的学习能力。提出坐标注意力动态解耦头,以显著增强模型对位置信息的感知度和敏感度。为了对样本进行更为精确的平衡处理,引入Focal Loss损失函数,进一步提高模型的检测精度与鲁棒性。实验结果表明,在景区行人数据集上,改进后的模型相较于原始模型,模型参数量减小了52%,mAP@0。5提升了2。1个百分点,mAP@0。5:0。95提升了1。4个百分点。在VisDrone2019数据集上,mAP@0。5提高了3。9个百分点。改进后的算法具有更强的泛化性能,能够更好地适用于景区行人检测任务。
Research on Improved YOLOv8n Light-Weight Pedestrian Detection Method in Scenic Spots
Aiming at the problems of large pedestrian flow and dense crowds in scenic spots and the low efficiency of existing target detection algorithms for detecting occluded targets and small targets and the large number of model parame-ters,a lightweight scenic pedestrian detection algorithm SSC-YOLOv8n based on YOLOv8n is proposed.Firstly,the spa-tial and channel reconstruction attention convolution SCC2fEMA module is proposed to significantly reduce the number of model parameters and thereby improve the detection speed of the model.Secondly,the refined slim-neck paradigm is adopted,and the GSConv and V0V-GSCSP modules are used to effectively reduce the number of model parameters while improving the learning ability of the model.In addition,a coordinate attention dynamic decoupling head is proposed to significantly enhance the model's perception and sensitivity to position information.Finally,in order to more accurately balance the samples,the Focal Loss function is introduced to further improve the detection accuracy and robustness of the model.Experimental results show that on the scenic pedestrian data set,compared with the original model,the improved model is reduced the number of model parameters by 52%,mAP@0.5 is increased by 2.1 percentage poins,and mAP@0.5:0.95 is increased by 1.4 percentage poins.It shows that on the VisDrone2019 data set,mAP@0.5 is increased by 3.9percentage points.The improved algorithm has stronger generalization performance and can be better suitable for pe-destrian detection tasks in scenic spots.

pedestrian detectionlightweightYOLOv8Focal Lossattention mechanism

张小艳、王苗

展开 >

西安科技大学 计算机科学与技术学院,西安 710600

行人检测 轻量化 YOLOv8 Focal Loss 注意力机制

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(2)