首页|改进YOLOv8n的选通图像目标检测算法

改进YOLOv8n的选通图像目标检测算法

扫码查看
激光选通成像技术在复杂环境下表现出色,但选通图像为灰度图像无法提供颜色信息,并且对比度较低,所以在进行小目标和遮挡目标检测时更加困难。为解决以上问题提出了一种改进YOLOv8n的选通图像目标检测算法。在特征提取的主干网络部分,使用大核卷积C2f-DSF更有效地捕获输入数据的全局信息。添加了多头注意力检测头Detect-SEAM模块,增强了特征提取和目标识别的能力。为了获取不同感受野的上下文信息,增强特征提取能力,使用了SPPF-M模块。采用上采样算子Dysample,减少特征信息的损失,从而提高小目标的检测精度。改进的YOLOv8n算法在选通图像数据集上mAP@0。5提高了2。4个百分点,mAP@0。5:0。95提高了1。8个百分点。为了验证改进的YOLOv8n算法的泛化性,选取KITTI数据集实验,相比于YOLOv8n算法改进YOLOv8n的mAP@0。5提高了4。3个百分点,mAP@0。5:0。95提高了3。5个百分点。
Improved YOLOv8n for Gated Imaging Object Detection Algorithm
Laser gated imaging technology performs well in complex environments.But gated images cannot provide color information for grayscale images and have low contrast,so it is more difficult to detect small targets and occluded targets.In order to solve the above problems,an improved YOLOv8n gated image target detection algorithm is proposed.Firstly,in the backbone network part of feature extraction,the large kernel convolution C2f-DSF is used to capture the global information of the input data more effectively.Then,the multi-head attention detection head Detect-SEAM module is added to enhance the ability of feature extraction and object recognition.In addition,in order to obtain the context infor-mation of different receptive fields and enhance the feature extraction ability,the SPPF-M module is used.The upsam-pling operator Dysample is used to reduce the loss of feature information,so as to improve the detection accuracy of small objects.The improved YOLOv8n algorithm improves mAP@0.5 by 2.4 percentage points and mAP@0.5:0.95 by 1.8 per-centage points on the strobe image dataset.In order to verify the generalization of the improved YOLOv8n algorithm,the KITTI data set experiment is selected.Compared with the YOLOv8n algorithm,the improved YOLOv8n's mAP@0.5 is increased by 4.3 percentage points,and mAP@0.5:0.95 is increased by 3.5 percentage points.

gated imagingYOLOv8noccluded targetssmall targetslarge kernel convolution

田青、王颖、张正、羊强

展开 >

北方工业大学 信息学院,北京 100144

先进技术成果西部(绵阳)转化中心,四川 绵阳 621000

选通图像 YOLOv8n 遮挡目标 小目标 大卷积核

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(2)