首页|多分支加权的Transformer霍克斯过程

多分支加权的Transformer霍克斯过程

扫码查看
时序点过程作为一种异步事件序列建模的重要方法,目前已经在地震、医疗等领域得到了广泛的应用.Transformer等深度学习模型的引入使得模型的预测性能得到了突破性进步,为了解决基于Transformer的霍克斯过程模型在对事件序列建模时出现的学习偏差问题,提出了多分支加权的Transformer霍克斯过程模型(multi-branch weighted transformer Hawkes process,MWTHP).基于多分支的思想,通过为不同角度下学习到的依赖关系赋予差异化的重要性,提高模型对事件序列的建模能力;为了应对基于Transformer的霍克斯过程模型的局部感知能力较差问题,构建了一种基于因果卷积的局部感知增强网络,改善了模型对事件序列局部上下文信息的关注能力.通过在多个合成数据集和真实世界数据集上进行实验,采用对数似然值、时间均方根误差、事件类型准确率等指标进行综合评价.实验结果验证了所提模型的性能优于其他基准模型;通过消融实验,证明了局部感知增强网络的有效性.
Multi-Branch Weighted Transformer Hawkes Process
Temporal point processes have emerged as an important method for modeling asynchronous event sequences,finding wide applications in fields such as seismic events and healthcare.The introduction of deep learning models like Transformer has led to breakthroughs in predictive performance.To address the learning bias issue in Transformer-based Hawkes process models for event sequence modeling,a multi-branch weighted Transformer Hawkes process model is pro-posed.Inspired by the multi-branch concept,this model assigns varying importance to the learned dependencies from dif-ferent perspectives,thereby enhancing the modeling capability for event sequences.To overcome the limited local percep-tion of the Transformer-based Hawkes process model,a causal convolution-based local perception enhancement network is constructed,improving the model's attention to local contextual information in event sequences.In this paper,through experiments on multiple synthetic and real-world datasets,comprehensive evaluations are conducted using metrics such as log-likelihood,root mean squared error in time,and event type accuracy.The experimental results validate that the pro-posed model outperforms other benchmark models.Furthermore,ablation experiments confirm the effectiveness of the lo-cal perception enhancement network.

temporal point processHawkes processdeep learningTransformermulti-branch weighted

高腾达、任兆亭、孙铁军、吴春雷、王雷全

展开 >

中国石油大学(华东)青岛软件学院,山东 青岛 266580

中国石油大学(华东)计算机科学与技术学院,山东 青岛 266580

青岛海信日立空调系统有限公司,山东 青岛 266510

时序点过程 霍克斯过程 深度学习 转换器 多分支加权

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(2)