首页|心电特征引导下的自监督房颤异常检测方法

心电特征引导下的自监督房颤异常检测方法

扫码查看
心电异常检测旨在发现心电数据中异常的模式,例如房颤特征或无效干扰信号特征.针对心房颤动心电异常,提出了一种简单有效的自监督房颤异常检测方法,称为心电特征引导下的房颤异常检测器(electrocardiogram feature induced atrial fibrillation detector,EFAFD),通过引入P波掩码和心率变异性指标预测多任务学习策略,指导模型学习房颤心电P波消失和RR间期绝对不齐等医学特征,提高模型对房颤异常心电模式的判别能力.具体地,将P波掩码心电数据通过自编码器重构原始的心电数据,学习房颤心电P波易消失的特征.同时,将心率变异性指标的预测任务整合到自编码器框架中,学习房颤心电RR间期绝对不齐的节律特征.通过度量心电的重构误差,实现房颤心电的检测.在真实的动态心电数据集上评估了所提出的方法,包括CPSC2021数据集和Icentia11k数据集.EFAFD模型的AUC分别达到了81.85%和92.46%.实验结果表明,所提出的方法在房颤异常检测方面优于现有的方法.
Self-Supervised Atrial Fibrillation Anomaly Detection Method Guided by Electrocardiogram Features
Electrocardiogram(ECG)anomaly detection aims to find abnormal patterns in ECG data,such as atrial fibrilla-tion features or invalid interference signal features.A simple and effective self-supervised anomaly detection method has been proposed for atrial fibrillation ECG disease,called electrocardiogram feature induced atrial fibrillation detector(EFAFD).In this method,the P-wave mask and heart rate variability(HRV)index are introduced through a multi-task learning strategy to guide the model in learning the medical characteristics such as P-wave disappearance and irregularity of RR intervals,so as to improve the model's ability to distinguish abnormal ECG patterns of atrial fibrillation.Specifically,the ECG data with P-wave masking are reconstructed using an autoencoder to capture the characteristic of P-wave disap-pearance in atrial fibrillation.Simultaneously,the prediction task of HRV indices is integrated into the autoencoder frame-work to learn the rhythmic features of atrial fibrillation electrocardiogram with absolute irregularity of RR intervals.Finally,atrial fibrillation ECG is detected by measuring the reconstruction error of the ECG.The proposed method is evaluated on real dynamic ECG datasets,including the CPSC2021 dataset and the Icentia11k dataset.The AUC of EFAFD reaches 81.85%on the CPSC2021 dataset and 92.46%on the Icentia11k dataset,and experimental results demonstrate its superiority over existing methods in atrial fibrillation anomaly detection.

electrocardiogramtime seriesanomaly detectionself-supervised learningatrial fibrillation detectionautoencoder

陈鹏、邓淼磊、樊好义、张德贤、韩涵

展开 >

河南工业大学 信息科学与工程学院,郑州 450001

郑州大学 计算机与人工智能学院,郑州 450001

哈尔滨理工大学 测控技术与通讯工程学院,哈尔滨 150006

心电图 时间序列 异常检测 自监督学习 房颤检测 自编码器

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(2)