首页|改进RHGSO-FC算法的RGB-D图像GMM聚类分割

改进RHGSO-FC算法的RGB-D图像GMM聚类分割

扫码查看
随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性.基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法.对亨利气体溶解度优化算法(HGSO)进行改进,提出改进的亨利气体溶解度优化算法(LRHGSO),并利用基于改进亨利气体溶解度优化算法的核模糊聚类(LRHGSO-KFC)生成初始化标签.将初始化标签传入到高斯混合(GMM)聚类中,得到多个聚类结果.最后对这些聚类结果通过聚集超像素方法进行分割合并,得到最终分割结果.实验数据集采用NYU depth V2室内图像,与现有的一些分割方法:阈值分割算法、硬C-均值、模糊C-均值、高斯混合聚类、核模糊聚类、模糊子空间聚类、混沌Kbest引力搜索算法和随机亨利气体溶解度优化算法进行比较,结果表明提出的RGB-D分割算法优于其他比较的算法.
Improved RHGSO-FC Algorithm for GMM Clustering Segmentation of RGB-D Images
With the introduction of low-cost depth image sensors,reliable image segmentation in RGB-D images is a goal of computer vision,and how to segment images of cluttered scenes is a challenging problem.A new RGB-D image seg-mentation method based on the random Henry gas solubility optimization-fuzzy clustering(RHGSO-FC)is proposed.Firstly,the Henry gas solubility optimization(HGSO)algorithm is improved to propose the improved Henry gas solubility optimization(LRHGSO)algorithm,and the initialization labels are generated using the the improved Henry gas solubility optimization-kernel fuzzy clustering(LRHGSO-KFC).The initialized labels are then passed into Gaussian mixture model(GMM)clustering to obtain multiple clustering results.Finally these clustering results are segmented and merged by the aggregating superpixels method to get the final segmentation results.The experimental dataset uses NYU depth V2 indoor images and is compared with some of the existing segmentation methods:threshold segmentation algorithm,hard C means,fuzzy C-means,Gaussian mixture model clustering,kernel fuzzy clustering,fuzzy subspace clustering,chaotic Kbest gravitational search algorithm and random Henry gas solubility optimization algorithm.The results show that the RGB-D segmentation algorithm proposed in this paper outperforms the compared algorithms.

RGB-D image segmentationkernel fuzzy clusteringHenry gas solubility optimization algorithmGaussian mixture modelaggregating superpixels

郭培岩、范九伦、刘恒

展开 >

西安邮电大学 通信与信息工程学院,西安 710100

RGB-D图像分割 核模糊聚类 亨利气体溶解度优化算法 高斯混合模型 聚集超像素

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(2)