首页|特定任务上下文解耦的遥感图像目标检测方法

特定任务上下文解耦的遥感图像目标检测方法

扫码查看
针对典型目标检测模型在遥感图像检测任务中因检测目标小而密集、尺度差异大、方向随机而背景复杂,导致漏检率高、边框回归精度差等问题,提出一种特定任务上下文解耦和快速部分卷积的遥感图像检测方法Faster-YOLO-TSCDH.将检测方法改进为特定任务上下文解耦检测方法,将分类任务和回归任务分开处理,分别融合不同空间特征和语义特征的特征图,降低不同任务的相互干扰,提高检测精度和鲁棒性.提出一种快速部分卷积多层次聚合模块,改进特征提取阶段的跨阶段分部卷积模块,强化特征提取能力,同时减轻解耦头带来参数量和运算量暴增的问题.采用一种对锚框质量动态评估的边框回归损失Wise-IoU,减少过高质量或过低质量锚框对边框回归的负面影响,提高边框回归的整体性能.实验结果表明,在DOTAv2和AI-TOD两个公共遥感图像数据集进行目标检测任务时的平均精度均值(mAP@IoU=0.5)达到65.4%和51.3%,相较基准模型提升了3到5个百分点,证明了改进方法的可行性和有效性.
Task-Specific Context Decoupling Object Detection Method for Remote Sensing Images
A remote sensing image detection method FasterYOLO-TSCDH based on task-specific context decoupling and fast partial convolution is proposed to address the issues of high miss rate and poor bounding-box regression accuracy caused by small and dense detection objects,large scale differences,random directions,and complex backgrounds in typi-cal object detection models in remote sensing image detection tasks.This paper improves the detection method to a task-specific context decoupling detection method,separating the classification task and regression task,and fusing feature maps of different spatial and semantic features separately to reduce mutual interference between different tasks and im-prove detection accuracy and robustness.The paper proposes a fast partial convolution multi-level aggregation module,which improves the cross stage partial convolution module in the feature extraction stage,strengthens the feature extrac-tion ability,and reduces the problem of parameter and computational bulk caused by decoupling heads.It adopts a dynamic evaluation of the quality of anchor frames using Wise-IoU to reduce the negative impact of high or low quality anchor on bounding-box regression and improve the overall performance of bounding-box regression.The experimental results show that the proposed method achieves a mAP@IoU=0.5 of 65.4%and 51.3%for object detection tasks on two common remote sensing image datasets,DOTAv2 and AI-TOD,which is 3 to 5 percentage points higher than the baseline model.The paper proves the feasibility and effectiveness of the improved method.

deep learningobject detectionremote sensing imagesmall objectdecoupled detectionfeature extraction

梁嘉杰、李星星

展开 >

五邑大学 智能制造学部,广东 江门 529020

深度学习 目标检测 遥感图像 小目标 解耦检测 特征提取

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(2)