首页|基于FMF-YOLOv5的光伏组件红外图像故障诊断

基于FMF-YOLOv5的光伏组件红外图像故障诊断

扫码查看
针对红外图像对比度较低、故障特征不明显的问题,提出全新的融合注意力机制(fusion attention mecha-nism,FAM),增强有效故障特征信息.创建新的融合金字塔池化(fusion spatial pyramid pooling,FSPP),增强特征提取能力.引入一种改进多层次融合卷积(multi-level fusion convolution,MFConv),利用MFConv构建的多层次跨阶段局部网络(multi-level cross stage partial network,MCSP)模块代替CSP模块,在提高少量模型参数量情况下,增加模型检测准确性.实验结果表明,在IoU阈值为0.5的情况下,该方法的平均精度(mAP)达到了93.1%.为光伏系统提供了可靠、高效的故障检测解决方案,从而使其成为提高系统性能和降低维护费用的实用解决方案.
Infrared Image Fault Diagnosis of Photovoltaic Modules Based on FMF-YOLOv5
Aiming at the problems of low contrast of infrared image and not obvious fault characteristics,the paper firstly proposes a new fusion attention mechanism(FAM)to focus on important fault characteristics.Secondly,a new fusion spa-tial pyramid pooling(FSPP)is created to enhance feature extraction capabilities.Finally,a new multi-level fusion convolu-tion(MFConv)is introduced,and a multi-level cross stage partial network is built by using MFConv.The MCSP module replaces the CSP module to maintain accuracy while increasing the number of model parameters with a small amount.The experimental results show that the average accuracy(mAP)of the proposed method reaches 93.1%when the IoU thresh-old is 0.5.This method provides a reliable and efficient fault detection solution for photovoltaic systems,making it a prac-tical solution to improve system performance and reduce maintenance costs.

object detectionphotovoltaic failurefeature fusionfusion attention

张莉莉、王修晖

展开 >

中国计量大学 信息工程学院 浙江省电磁波信息技术与计量检测重点实验室,杭州 310018

目标检测 光伏故障 特征融合 融合注意力

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(2)