首页|融合CNN和WDF模型的电商企业商品销量预测研究

融合CNN和WDF模型的电商企业商品销量预测研究

扫码查看
为了适应电商企业商品销量数据规模大、维度高、非线性等特征,并提高销量预测的准确性,创新性地提出一种卷积神经网络融合加权深度森林(CNN-WDF)的销量预测方法.利用卷积神经网络(CNN)处理高维数据的优势对电商企业商品销量数据进行特征提取,降低冗余度和模型训练复杂度.提出一种改进的加权深度森林模型(WDF)进行商品销量预测.该模型依据各个子树的预测准确率计算每一级森林中该子树的权重以提高整体预测准确性,且相对于传统深度网络模型具有超参数少、可解释性强等优点.利用京东商品销量数据进行实验验证,结果表明:CNN-WDF融合模型在不同规模京东销售数据集上,预测准确率均显著高于其他对比模型,且随着数据集规模的扩大,预测准确率提高更加明显.
Research on Commodity Sales Forecast of E-Commerce Enterprises Integrating CNN and WDF Model
To enhance the accuracy of sales prediction for e-commerce enterprises'merchandise sales data,which often exhibit large scale,high dimensionality,and non-linearity,the paper proposes a novel sales prediction method called con-volutional neural network integrated weighted deep forest(CNN-WDF).Firstly,a convolution neural network(CNN),which has the advantage of handling high-dimensional data,is used to extract features of high-dimensional data to reduce redundancy and model training complexity.Secondly,an improved weighted deep forest model(WDF)is proposed for commodity sales prediction,in which the weight of each subtree in each forest level is calculated based on its prediction accuracy.The model can not only improve the overall prediction accuracy,but also has the advantages of fewer hyperpa-rameters and stronger interpretability compared with traditional deep network models.The experimental results using Jing-dong commodity sales data show that the prediction accuracy of the CNN-WDF fusion model is significantly higher than that of other comparative models on the same datasets of different sizes.Moreover,the prediction accuracy of this model improves even more with the increase in dataset size.

commodity sales forecastdeep learningintegrated modelconvolutional neural networkweighted deep forest

袁瑞萍、魏辉、傅之家、李俊韬

展开 >

北京物资学院 信息学院,北京 101149

智能物流系统北京市重点实验室,北京 101149

中国矿业大学(北京)管理学院,北京 100083

商品销量预测 深度学习 融合模型 卷积神经网络 加权深度森林

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(2)