首页|启发式搜索的多智能体异速轨迹规划

启发式搜索的多智能体异速轨迹规划

扫码查看
在多智能体系统研究中,多智能体路径规划(multi-agent path finding,MAPF)是一个核心难题,其目标是为各个智能体规定独立路径,确保智能体在移动过程中不发生碰撞.这是一个NP难题,亟须高效解决算法.创新性地提出了一种多智能体路径规划算法——启发式导向冲突搜索(heuristic guided conflict-based search,HG-CBS),以解决复杂的MAPF场景,如智能体移动速度不同或各条边的道路长度不同.为优化HG-CBS算法,构建了三种独特的启发式计算方法:(1)加权求和法,以所有启发式的加权总和作为最终启发式;(2)帕累托集合法,构建一个帕累托集并从中选择节点;(3)交替法,在搜索迭代过程中交替使用各种启发式.实验结果显示,相比于传统方法,带有启发值的HG-CBS在成功率、运行时间及扩展节点数量等关键性能指标上均表现更优.例如,在包含16个智能体的复杂场景下,HG-CBS-h3(交替法)将运行时间缩短了89%,将拓展节点的数目减少了95%.此外,随着场景复杂度的提升,HG-CBS-h3的性能优势更加明显.这些结果证明了HG-CBS算法的有效性和高效性,对多智能体轨迹规划问题具有显著的理论和应用价值.
Heuristic Search-Based Multi-Agent Heterogeneous Speed Path Planning 2 HG-CBS
Multi-agent path finding(MAPF)is a core challenge in multi-agent systems research,aiming to assign indepen-dent paths to each agent to avoid collisions during movement.As an NP-hard problem,it is highly sought after to develop efficient algorithms.This paper proposes an innovative multi-agent path planning algorithm called heuristic guided conflict-based search(HG-CBS),designed to address complex MAPF scenarios such as heterogeneous agent speeds and varying edge lengths.To optimize HG-CBS,the paper develops three unique heuristic computation methods:(1)weighted sum method,using the weighted sum of all heuristics as the final heuristic;(2)Pareto set method,constructing a Pareto set and select-ing nodes from it;(3)alternating method,alternating between various heuristics during search iterations.Experimental re-sults demonstrate that HG-CBS with heuristics outperforms conventional methods in terms of success rate,runtime,and number of expanded nodes.For instance,in a complex scenario with 16 agents,HG-CBS-h3(alternating method)reduces the runtime by 89%and the number of expanded nodes by 95%.Moreover,the performance advantage of HG-CBS-h3 becomes even more prominent as the complexity of the scenario increases.These findings validate the effec-tiveness and efficiency of the HG-CBS algorithm,highlighting its significant theoretical and practical implications for multi-agent trajectory planning.

multi-agent path findingheuristic guided conflict-based searchheuristic searchPareto set

鲁宇、匡金骏、肖峣、龚建伟

展开 >

重庆长安望江工业集团有限公司,重庆 401120

北京理工大学 机械与车辆学院,北京 100081

多智能体路径规划 启发式导向冲突搜索 启发式搜索 帕累托集

2025

计算机工程与应用
华北计算技术研究所

计算机工程与应用

北大核心
影响因子:0.683
ISSN:1002-8331
年,卷(期):2025.61(2)