首页|基于深度子空间学习的焊缝缺陷检测方法

基于深度子空间学习的焊缝缺陷检测方法

扫码查看
主成分分析网络(PCANet)是一个基于简化的卷积神经网络的深度子空间学习模型.针对PCANet算法应用于焊缝缺陷检测时无法体现数据完整结构信息、对噪声较敏感等问题,在PCANet的基础上提出一种鲁棒非贪婪双向二维PCANet(RNG-BDPCANet)焊缝缺陷在线检测方法.RNG-BDPCANet在范数距离度量标准下,利用双向二维主成分分析作卷积核,并采用非贪婪策略得到目标函数最优的整体投影矩阵,对离群值具有较强的鲁棒性.最后,在自建的焊缝人工数据集、ORL和Yale B人脸数据集上分别进行实验.结果表明,所提出的算法在分类性能方面得到显著提高,具有较强的鲁棒性能.
Weld defect detection method based on deep subspace learning
Principal Component Analysis Network(PCANet)is a simplified deep subspace learning model based on Convolutional Neural Network(CNN).When PCANet is applied to the weld defect detection,it cannot reflect the complete structure information of data and is sensitive to noise.To solve these problems,a Robust Non-Greedy Bi-Directional two-dimensional PCANet algorithm(RNG-BDPCANet)weld defect online detection method was pro-posed,which used a bi-directional two-dimensional principal component analysis as the convolution kernel under norm distance metric to obtain the optimal global projection matrix of the objective function with a non-greedy strat-egy.It was robust to outliers.The experiments were carried out on the self-built weld artificial dataset,ORL and Yale B face dataset respectively.The results showed that the proposed algorithm had a significant improvement in the classification and robustness performances.

weld defectsprincipal component analysis networkdeep learningtwo-dimensional principal component analysisrobustnessnorm

李进军、王肖锋、葛为民

展开 >

天津理工大学计算机科学与工程学院,天津 300384

天津理工大学天津市先进机电系统设计与智能控制重点实验室,天津 300384

天津理工大学 机电工程国家级实验教学示范中心,天津 300384

焊缝缺陷 主成分分析网络 深度学习 二维主成分分析 鲁棒性 范数

国家重点研发计划资助项目天津市科技计划重大专项资助项目

2017YFB130330417ZXZNGX00110

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(1)
  • 32