首页|基于预警控制限自学习的滚动轴承早期故障预测

基于预警控制限自学习的滚动轴承早期故障预测

扫码查看
传统滚动轴承故障预警通常采用固定阈值分级报警,存在较多的误报警和漏报警.如何有效地从振动信号里学习能表征其健康状态的指标,自学习故障预警控制限,是解决该问题的关键所在.因此,提出一种预警控制限自学习的轴承早期故障预测方法.首先,采用短时傅里叶变换提取振动数据的故障特征;其次,提出基于矩阵变量高斯卷积深度置信网络的健康指标构建方法,在不破坏二维样本空间内部结构的同时将故障特征组合抽象成高层特征,通过全连接层构建健康指标;再次,拟合正常运行状态健康指标的概率分布的及检验拟合优度,并以上侧分位数作为故障预警控制限;最后,以国际标准轴承数据集验证了所提方法的有效性.
Incipient fault prediction based on warning control limit self-learning for the rolling bearing
Traditional rolling bearing fault warning usually adopts fixed threshold grading alarm,which exist many false alarms and missed alarms.The keys to solve this problem are how to effectively learn the indicators that can represent the health state of the equipment from vibration signals and self-learn the warning control limits.A meth-od of bearing early fault prediction based on warning control limit self-learning was proposed.The Short-time Fou-rier Transform(STFT)was used to extract fault features of vibration data.A health indicator construction method based on Matrix Variate Gaussian Convolutional Deep Belief Network(MVGCDBN)was proposed,which could combine the fault features into high-level features without destroying the internal structure of two-dimensional sam-ple space,and construct the health indicator through the full connection layer.The probability distribution of health indicators under normal operating conditions was fitted and goodness of fit was tested,and the upper quantile was used as the fault warning control limit.The effectiveness of the proposed method was verified with the international standard bearing data set.

incipient fault predictionhealth indicatordistribution fittingpredictive maintenancerolling bearing

樊盼盼、袁逸萍、马占伟、高建雄、张育超

展开 >

新疆大学机械工程学院,新疆 乌鲁木齐 830047

中船重工海为(新疆)新能源有限公司,新疆 乌鲁木齐 830006

早期故障预测 健康指标 分布拟合 预测性维护 滚动轴承

国家自然科学基金资助项目国家自然科学基金资助项目新疆维吾尔自治区重点研发资助项目

71961029520650622021B01003

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(1)
  • 32