首页|基于多任务学习的IT运维服务需求语义解析

基于多任务学习的IT运维服务需求语义解析

扫码查看
IT运维服务的自动化水平影响着企业的运营效率,为实现基于无人坐席的智能服务台,提出一种IT运维服务需求语义解析方法,包括意图识别和命名实体识别两个任务.在Multi-BERT-BiLSTM-CRF(MBBC)基准模型之上,通过先验知识和外部资源将词性和实体词典特征融入编码层,增强模型对词法信息和领域知识的学习.对MBBC模型的参数共享方式进行改进,提出增强的MBBC模型模型,增强两个任务之间的信息共享能力.实验表明,与MBBC模型相比,融合词性与实体词典特征并采用增强的MBBC模型可以进一步提升两类任务的识别性能.
Semantic parsing of IT operation and maintenance service requirements based on multi-task learning
The automation level of IT operation and maintenance service affects the operation efficiency of enterpri-ses.To realize the intelligent service desk based on unattended,a semantic analysis method of IT operation and ma-intenance service requirements was proposed,including two tasks of intention recognition and named entity recogni-tion.Based on the Multi-BERT-BiLSTM-CRF(MBBC)benchmark model,the part-of-speech and entity dictionary features were integrated into the coding layer with prior knowledge and external resources to enhance the learning of lexical information and domain knowledge.In addition,the parameter sharing mode of MBBC model was improved,and Enhanced MBBC(EMBBC)model was proposed to enhance the information sharing capability between two tasks.The computational experiments on an enterprise IT operation and maintenance worksheet data set showed that compared with MBBC model,the recognition performance of the two tasks could be further improved by combi-ning the features of speech and entity dictionary and adopting EMBBC model.

IT operation and maintenance serviceintention recognitionnamed entity recognitionBERT modelmulti-task learning

许明阳、刘振元、王承涛

展开 >

华中科技大学人工智能与自动化学院,湖北 武汉 430074

图像信息处理与智能控制教育部重点实验室,湖北 武汉 430074

武汉问道信息技术有限公司,湖北 武汉 430040

IT运维服务 意图识别 命名实体识别 BERT模型 多任务学习

国家自然科学基金资助项目武汉市第四批"黄鹤英才计划"入选人才资助项目

72071087

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(2)
  • 25