首页|质量感知的多目标云制造服务组合优化算法

质量感知的多目标云制造服务组合优化算法

扫码查看
云制造服务组合问题往往存在多个优化目标且各目标权重难以事先确定,为了显著提高进化算法在求解过程中的种群多样性,并有效平衡进化算法的全局与局部搜索能力,提出一种基于自适应选择和反向学习策略的进化算法,同时优化时间、成本、可靠性、可用性和信誉度.首先为了缩短求解组合方案的时间,采用K-means方法基于服务质量对候选服务进行聚类,去除质量较差的服务;然后采用反向学习策略提高全局搜索性能,再通过选择策略和概率更新策略有效平衡算法的全局与局部搜索能力;最后与4种先进算法进行实验对比表明,所提算法具有更好的综合性能.
Quality-aware multi-objective cloud manufacturing service composition optimization algorithm
To solve the difficult problem of weighing the weights of multiple targets in the cloud manufacturing serv-ice composition,as well as significantly improve the population diversity of the evolutionary algorithm in the solu-tion process and effectively balances the global and local search capabilities of the evolutionary algorithm,an evolu-tionary algorithm based on adaptive selection and reverse learning strategy was proposed,while optimizing the time,cost,reliability,availability and credibility.To shorten the time to solve the combined solution,the K-means meth-od was used to cluster the candidate services based on the quality of service,and the poorer services were elimina-ted.Then,the reverse learning strategy was used to improve the global search performance,and the global and lo-cal search capabilities of the algorithm were effectively balanced through selection and probability update strategies.The results of comparative experiments with four advanced algorithms showed that the proposed algorithm had bet-ter comprehensive performance.

service compositionservice qualitymulti-objective optimizationevolutionary algorithm

刘桂森、贾兆红

展开 >

安徽大学计算机科学与技术学院,安徽 合肥 230601

安徽大学计算智能与信号处理教育部重点实验室,安徽 合肥 230601

服务组合 服务质量 多目标优化 进化算法

国家自然科学基金资助项目国家自然科学基金资助项目

7197100271601001

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(2)
  • 23