首页|基于多种群遗传算法的航天复杂系统测试任务调度

基于多种群遗传算法的航天复杂系统测试任务调度

扫码查看
针对航天复杂系统型号较多,传统测试流程与调度设计只能人工定制化排布,效率较低且未有效优化,同时,考虑到航天复杂系统快速测试的迫切需求,提出一种基于多目标遗传算法的航天测试流程自动生成方法.该方法在测试项集合明确的前提下,将测试项抽象为离散事件,以测试总时间和测试资源均衡度为优化目标,充分考虑航天器测试的诸多约束,将其作为遗传算法执行过程中交叉或变异的禁忌项.在初始种群确定后,对测试流程和调度方案进行自动生成和优化.对算例的仿真结果表明,该方法相对于同实验条件下的传统半串行测试方法和单目标优化方法,测试总时间或资源均衡度得到了较大提升.在进一步扩展优化目标和约束项后,该方法可有效提高航天复杂系统测试过程的快速响应能力和可靠性.
Scheduling of aerospace complex system test tasks based on multi-population genetic algorithm
In view of the large number of complex aerospace systems,the traditional test process design can only be manually customized,which is inefficient and not effectively optimized.At the same time,considering the urgent need for rapid testing of complex aerospace systems,a multi-objective genetic algorithm based on the method of au-tomatic generation of the aerospace test process was proposed.Under the premise of a clear set of test items,the test items were abstracted as discrete events,the total test time and test resource balance were taken as the optimi-zation goals,and many constraints of spacecraft testing were fully considered as the taboo items in the execution process of the genetic algorithm or variant contraindications.After the initial population was determined,the aero-space testing process was automatically generated and optimized.The simulation results of the numerical example showed that compared with the traditional semi-serial test method and single-objective optimization method under the same experimental conditions,the total test time or resource balance had been greatly improved.After further expanding the optimization objectives and constraints,the method could effectively improve the rapid response capa-bility and reliability of the aerospace complex system testing process.

process optimizationmulti-population genetic algorithmparallel task schedulingaerospace complex system test

胡涛、申立群、付晋、黄昌彬

展开 >

哈尔滨工业大学仪器科学与工程学院,哈尔滨 黑龙江 150001

首都航天机械有限公司,北京 100076

流程优化 多种群遗传算法 并行任务调度 航天复杂系统测试

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(4)
  • 1
  • 7