首页|基于神经网络的虚拟人姿态仿真方法

基于神经网络的虚拟人姿态仿真方法

扫码查看
在制造业中,对工人工作姿势进行人体工程学评估对于预防肌肉骨骼疾病(MSD)是一项重要的工作.针对传统MSD评估方法存在的虚拟人作业姿态调整真实性不足、调整效率低等问题,提出一种虚拟人作业姿态的仿真方法.首先,建立了基于6D旋转的虚拟人骨架模型;其次,设计了一种基于编码器-解码器架构,使用循环神经网络(RNN)和注意力机制(AM)的虚拟人关节旋转生成模型,对虚拟人各关节姿态进行求解;然后,基于平衡性方法对虚拟人姿态生成进行迭代,生成虚拟人搬运姿态;最后,根据快速上肢分析(RULA)得分对姿态进行筛选,得到虚拟人最终姿态.所提方法生成的虚拟人作业姿态与作业人员实际操作姿态平均关节角度的误差为5.79°,RULA得分准确率为85.4%,表现出较好的实用性.
Virtual human posture simulation method based on neural network
In the manufacturing industry,the ergonomic assessment of workers'working postures is an important work for the prevention of Musculoskeletal Disorders(MSD).In this study,a simulation method for virtual human working posture was proposed to address the problems of insufficient authenticity and low efficiency of virtual hu-man working posture adjustment that exist in traditional MSD assessment methods.A virtual human skeleton model based on 6D rotation was established.A virtual human joint rotation generation model based on encoder-decoder ar-chitecture using Recurrent Neural Network(RNN)and Attentional Mechanism(AM)was designed to solve the vir-tual human joint poses with virtual human hands,feet and root node coordinates as inputs.Based on the balance method,the virtual human posture generation was iterated to generate the virtual human carrying posture.The pose was filtered according to the Rapid Upper Limb Assessment(RULA)score to obtain the final pose of the virtual hu-man.The error of the average joint angle between the virtual human working posture generated by the proposed method and the actual operating posture of the operator was 5.79°,and the accuracy rate of the RULA score was 85.4%,which showed good practicability.

virtual humanworking postureergonomicsrecurrent neural networkattention mechanism

武溟暄、葛晓波、丰博、邵晓东

展开 >

西安电子科技大学机电工程学院,陕西 西安 710071

虚拟人 作业姿态 人机工效 循环神经网络 注意力机制

江苏省自然科学基金

BK20231177

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(5)
  • 47