首页|基于深度学习的钢卷端面缺陷检测系统设计

基于深度学习的钢卷端面缺陷检测系统设计

扫码查看
针对热轧钢卷端面图像背景复杂、缺陷特征各异、缺乏标准缺陷数据集,用传统视觉方法难以自动识别问题,提出了基于深度学习的热轧钢卷端面缺陷检测的技术架构,给出了该框架下的图像采集、预处理与分割、深度神经网络算法设计和缺陷特征数据库搭建等关键技术,最后开发了基于深度学习的钢卷端面缺陷检测系统,试验表明该系统的典型缺陷检出率在90%以上,解决了热轧钢卷端面缺陷长期依赖人工肉眼识别的行业性难题,实现了端面缺陷的在线、自动、精准检测,所形成的成套端面缺陷检测技术和装备,在钢铁行业多条热轧产线稳定、可靠地投用运行.
Design of rolled steel end defects detection system based on deep learning
Because of the complexity of image background,different defect characteristics and lack of standard defect data set,the hot rolled steel end defects are difficult to automatically identify with traditional visual methods.The deep learning-based technical architecture of defect detection for hot-rolled steel was presented,and the key tech-niques such as image acquisition,preprocessing and segmentation,deep neural network algorithm design and defect feature database construction were given.A deep learning-based steel roll end defect detection system was designed.The test showed that the defect detection rate of this system was more than 90%,which solved the industrial prob-lem of long-term dependence on manual naked eye recognition of end surface defects of hot rolling steel,and realizes the online,automatic and accurate detection of end surface defects.A complete set of end defect detection technolo-gy and equipment were formed,which were used in many hot rolling lines in the steel industry.The application re-sults showed that the detection system was stable and reliable.

steel rollend defectsdeep learningidentification

张雪荣、向峰、李红军、张弛、周思聪、左颖

展开 >

宝山钢铁股份有限公司中央研究院,湖北 武汉 430080

武汉科技大学机械自动化学院,湖北 武汉 430081

武汉纺织大学机械工程与自动化学院,湖北 武汉 430073

北京航空航天大学 自动化科学与电气工程学院,北京 100191

展开 >

钢卷 端部缺陷 深度学习 识别

国家自然科学基金国家自然科学基金

5197543151805020

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(5)
  • 24