首页|基于残差池化自编码机的无监督异常分割

基于残差池化自编码机的无监督异常分割

扫码查看
为了解决异常缺陷面积大小不一及背景干扰问题,基于残差池化自编码机提出一种无监督异常分割模型,检测和分割物体表面的异常缺陷.所提模型设计并使用残差池化模块,增加传统模型对异常的逆向重建能力,使正常和异常之间的分水岭更加明显,解决了大面积缺陷分割不完全的问题;在异常评分阶段引入高斯平滑函数,使模型具有鲁棒性,减小了背景对模型的干扰.在公开的MVTEC AD数据集上进行验证,结果表明,所提模型在图片级别检测精度上达到95.6%、像素级别检测精度上达到96.5%、区域级别的检测精度上达到91.7%,证明了所提模型的有效性,将该模型与其他异常分割方法进行比较,证明了模型的优越性.
Unsupervised anomaly segmentation based on residual max-pooling autoencoder
To solve the problem of different defect areas and interference of background,an unsupervised anomaly segmentation model was proposed based on residual max-pooling autoencoder machine to detect and segment abnor-mal defects on object surface.The residual max-pooling module was designed and used in the proposed model to solve the problem of incomplete segmentation of large area defects,resulting in the ability of the traditional model to reverse the anomaly reconstruction was enhanced,and the watershed between normal and abnormal was more obvi-ous.Gaussian smoothing function was introduced in the abnormal scoring stage,resulting in the model robust was enhanced and the interference of background to the model was reducing.On the MVTEC AD data set of simulated industry,the detection accuracy of image level was 95.6%,pixel level was 96.5%and region level was 91.7%,which proved the validity of the proposed model.By comparing with other anomaly segmentation methods,the su-periority of the proposed model was validated.

anomaly segmentationunsupervisedresidual max-poolingGaussian smoothing

杨胜雄、陈莹

展开 >

江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122

异常分割 无监督 残差池化模块 高斯平滑

国家自然科学基金资助项目国家自然科学基金资助项目

6157316862173160

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(6)
  • 4