首页|基于工业大数据的重叠社区发现算法

基于工业大数据的重叠社区发现算法

扫码查看
为了深入挖掘和分析工业大数据隐藏的关系、趋势和模式,从而为企业提供更好的决策依据,结合随机游走和标签传播思想,提出一种基于工业大数据的重叠社区发现算法.设计了种子节点选取算法,通过随机游走计算各节点的重要性,选出不相关和重要性高的种子节点;提出重叠社区发现算法,对种子节点赋予唯一标签,迭代进行标签传播直到节点标签不再改变,根据节点标签得到最终的重叠社区划分结果.通过在真实数据集和人工数据集上进行对比实验表明,该算法可以在网络上有效发现高质量的重叠社区,并进一步解决工业大数据的数据分析、信息挖掘等核心问题.
Community overlap discovery algorithm based on industrial big data
Industrial big data has a large scale,complex structure,and high value density.To deeply explore and ana-lyze its hidden relationships,trends and patterns,and to provide better decision-making basis for enterprises,com-bined with the idea of random walk and label propagation,a community overlap discovery algorithm based on indus-trial big data was proposed.The algorithm of seed node selection was designed,the importance of each node was cal-culated by random walk,and the irrelevant and important seed nodes were selected.Then,an overlapping communi-ty discovery algorithm was proposed,the seed node was given a unique label,and the label was propagated iterative-ly until the node label was no longer changed.The final overlapping community division result was obtained accord-ing to the node label.Finally,comparative experiments were carried out on real data sets and artificial data sets,the results showed that the algorithm could effectively find high-quality overlapping communities on the network.The algorithm could be applied to data analysis and information mining of industrial big data.

industrial big datacommunity detectionoverlapping communityrandom walklabel propagation

康海燕、景悟、张仰森

展开 >

北京信息科技大学信息管理学院,北京 100192

工业大数据 社区发现 重叠社区 随机游走 标签传播

国家社科基金年度资助项目教育部人文社会科学基金资助项目

21BTQ07920YJAZH046

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(6)
  • 13