首页|基于MOPSO算法改进的异常点检测方法

基于MOPSO算法改进的异常点检测方法

扫码查看
挖掘工业大数据的隐含价值是智能制造的一个重要研究方向,针对工业大数据特点开展异常点检测是实现数据分析的前提.首先,介绍了工业大数据异常点检测解决的主要问题,提出相关定义.其次,基于多目标粒子群算法(MOPSO),提出一种工业大数据异常点检测的改进DBSCAN模型,介绍了模型的算法设计思想、算法步骤,完成了算法伪代码的编写,并提出了算法时间复杂度的计算方法.最后,通过某电芯工厂制造数据,进行了模型仿真与实验,经实验验证,所提模型提高了工业大数据异常点检测的准确率,为数据挖掘在工业异常点检测中的应用提供了参考.
Outlier detection model modified based on MOPSO algorithm
Mining the implied value of industrial big data is an important research direction of intelligent manufactur-ing,and carrying out outlier detection is a prerequisite for realizing data analysis.The main problems addressed by industrial big data anomaly detection were introduced,and the relevant definitions in this paper were proposed.Based on the Multi-Objective Particle Swarm Optimization algorithm(MOPSO),an improved DBSCAN model for industrial big data outlier detection was proposed.The algorithm design idea and algorithm steps of the model were introduced,the pseudo-code of the algorithm was completed,and the calculation the time complexity of the algo-rithm was proposed.The model simulation and experiments were carried out by using the manufacturing data of an electric core factory,and it was verified that the proposed model could improve the accuracy of industrial big data outlier detection.This paper provided a reference for the application of data mining in industrial outlier detection.

industrial big dataoutlier detectionmulti-objective particle swarm optimization algorithmDBSCAN model

高勃、柴学科、朱明皓

展开 >

北京交通大学计算机与信息技术学院,北京 100044

北京交通大学经济管理学院,北京 100044

工业大数据 异常点检测 多目标粒子群算法 DBSCAN模型

国家自然科学基金资助项目

62172033

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(7)