首页|基于Stacking集成学习的剩余使用寿命预测

基于Stacking集成学习的剩余使用寿命预测

扫码查看
剩余使用寿命(RUL)预测对于设备维护策略的制定有着关键作用.面对可变环境和多样的操作条件,单一寿命预测模型的性能波动较大,泛化能力弱.针对这一问题,提出一种融合多个相异模型的Stacking集成模型,纠正单一模型的预测误差.首先,对状态监测数据进行滑动时间窗口处理,获得具有时间序列信息的性能退化数据;然后,以提高模型的准确性和多样性为目标,确定基学习器的种类;最后,将梯度提升决策树(GBDT)作为元学习器,整合基学习器的预测结果,输出最终结果.基于NASA C-MAPSS数据集,对提出的集成模型进行验证,结果表明:Stacking集成模型的预测精度显著高于基学习器,与其他传统预测模型相比,也具有明显优势.
Remaining useful life prediction based on stacking ensemble learning
Remaining Useful Life(RUL)prediction plays a key role in the formulation of equipment maintenance strategies.In the face of variable environment and diverse operating conditions,the performance of a single life pre-diction model fluctuates greatly,and the generalization ability is weak.Aiming at this problem,a Stacking ensemble model integrating multiple dissimilar models was proposed to correct the prediction error of a single model.The state monitoring data was processed by sliding time window to obtain performance degradation data with time series information;with the goal of improving the accuracy and diversity of the model,the types of base learners were de-termined;the Gradient Boosting Decision Tree(GBDT)was used as a meta-learner to integrate the prediction re-sults of the base learner and output the final result.Based on the NASA C-MAPSS dataset,the proposed ensemble model was verified,and the results showed that the prediction accuracy of the Stacking ensemble model was signifi-cantly higher than that of base learners,and it also had obvious advantages compared with other traditional models.

Stacking ensemble modelremaining life predictionsliding time windowensemble learning

韩腾飞、李亚平

展开 >

南京林业大学经济管理学院,江苏 南京 210037

Stacking集成模型 剩余寿命预测 滑动时间窗口 集成学习

国家自然科学基金资助项目国家自然科学基金资助项目江苏高校"青蓝工程"资助项目(2021)

7217112071701098

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(7)