首页|基于图卷积神经网络的漂移检测方法

基于图卷积神经网络的漂移检测方法

扫码查看
从时间维度来看,演化是业务过程的必然性.流程挖掘中漂移检测的宗旨是找出运行日志中的变化时间点,进而划分出演化前后的不同业务过程.然而,现有漂移检测算法在执行过程中,都需要人为指定需要监控的演化特征,给用户增加了使用负担.同时,还存在准确率低和耗时较长问题.为此,提出一种基于图卷积网络的检测算法:首先,将日志轨迹转为活动图,利用图的节点信息和拓扑结构来刻画日志所有特征;接着,利用图卷积的聚合特性获取到活动图的全局特征;然后,通过增加虚拟节点来表达活动图的所有信息;最后,采用欧氏距离和k-近邻算法来检测漂移点位置.通过真实公开数据集实验测试,表明了本文方法的有效性.
Process concept drift detection based on graph convolutional network
Evolution is inevitable in the business process from the perspective of time dimension.The purpose of drift detection in process mining is to find out the points of changing time in the running log,and then divide different business processes before and after evolution.However,the current drift detection algorithms need to specify the e-volution features that should be monitored manually during implementation,which has the problems of low accuracy and long time consuming as well as increases unnecessary burden for users.A detection algorithm based on Graph Convolutional Network was proposed.The traces were transformed into an activity graph,and all features of the traces were characterized by the node information and topological structure of the graph.The global characteristics of the active graph were obtained by using the aggregation characteristics of graph convolution.All information of the activity graph was expressed by adding a virtual node.Finally,Euclidean distance and K-nearest neighbor algorithm were used to detect the position of drift points.The validity of the proposed method was proved by the experimental tests on real public datasets.

concept driftbusiness evolutiongraph convolutional networkprocess mining

林雷蕾、肖礼文、魏代森、徐昱嵩、王静岐、闻立杰、李猛坤

展开 >

首都师范大学管理学院,北京 100048

工业大数据系统与应用北京市重点实验室,北京 100084

浪潮通用软件有限公司,山东 济南 250101

清华大学软件学院,北京 100084

展开 >

概念漂移 业务演化 图卷积网络 流程挖掘

国家重点研发计划资助项目国家自然科学基金资助项目北京市教育委员会科学研究计划资助项目

2019YFB170400362021002KM202310028003

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(8)