首页|基于特征选择的风机检修流程预测性监控方法

基于特征选择的风机检修流程预测性监控方法

扫码查看
针对风机检修业务流程中存在的操作失误和工作延期等问题,应用业务流程预测性监控方法,预测业务的下一事件、下一事件执行时间和剩余时间,以提醒工作人员预防和避免风险的发生.首先,针对不同预测任务,提出一种基于优先级的特征自选取策略,并使用LightGBM(Light Gradient Boosting Machine)算法作为特征选择策略的依托预测模型,得到对预测结果有积极影响的输入特征;然后,针对不同预测任务分别采用LightGBM算法和LSTM(Long Short Term Memory)神经网络构建预测模型;最后,经实验评估和分析,在风机检修业务流程中,特征选择策略能够为不同的预测任务提供有效特征,确保预测的准确率,具有实际应用价值.对于不同预测任务而言,LightGBM算法更适用于下一事件任务预测,LSTM模型更适用于时间方面的任务预测.
Predictive monitoring method of wind turbine overhauls process based on feature selection
Aiming at the problems of operation errors and work delays in the wind turbine overhauls business process,the predictive monitoring method of business process was applied to predict the next event,execution time and remaining time of the business for reminding the staff to prevent and avoid risks.According to different predic-tion tasks,a priority-based feature self-selection strategy was proposed,and the input features that had positive im-pact on the prediction results was obtained by using Light Gradient Boosting Machine(LightGBM)algorithm as the prediction model of feature selection strategy.Then,for different prediction tasks,LightGBM algorithm and Long Short Term Memory(LSTM)neural network were used to build prediction models.Through experimental evaluation and analysis,the feature selection strategy could provide effective features for prediction tasks,ensure the accuracy of prediction,and has practical application value in the wind turbine overhauls business process.For differ-ent prediction tasks,LightGBM algorithm was more suitable for next event task prediction,and LSTM model was more suitable for time task prediction.

process prediction monitoringwind turbine overhaulsfeature selectionnext eventremaining time

郭娜、刘聪、李彩虹、刘文娟、王雷、曾庆田

展开 >

山东理工大学电气与电子工程学院,山东 淄博 255000

山东理工大学计算机科学与技术学院,山东 淄博 255000

山东科技大学计算机科学与工程学院,山东 青岛 266590

流程预测性监控 风机检修 特征选择 下一事件 剩余时间

国家自然科学基金资助项目山东省泰山学者工程专项基金资助项目山东省泰山学者工程专项基金资助项目山东省自然科学基金优秀青年基金资助项目山东省高等学校青创科技计划创新团队资助项目

62472264ts20190936tsqn201909109ZR2021YQ452021KJ031

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(8)