首页|考虑运输时间和机器预维护的柔性作业车间绿色调度

考虑运输时间和机器预维护的柔性作业车间绿色调度

扫码查看
针对柔性作业车间调度问题,在同时考虑运输时间、机器预维护和能耗等约束的情况下,建立了最小化完工时间和总能耗的混合整数规划模型,并提出一种多目标离散Jaya算法进行求解.根据问题的特点,设计了基于工序和机器的双层编码方式,并采用均衡加工时间和能耗的种群初始化方法产生高质量的初始种群.为了将解转化为可行有效的调度方案,设计了带有预维护动态调整策略和考虑运输时间的贪婪插入解码方法.根据解的不同情况,采用不同的方式更新个体.将本文设计的算法与常用的多目标优化算法在18组不同规模的测试算例下进行对比分析,验证了所提算法的有效性.实验结果表明,所提算法能够有效解决考虑运输时间和机器预维护的柔性作业车间绿色调度问题.
Flexible job-shop green scheduling considering transportation time and machine preventive maintenance
For the flexible job shop scheduling problem,considering the transportation time,machine preventive ma-intenance and energy consumption constraints simultaneously,a mixed-integer programming model that minimized makespan and total energy consumption was established,and a multi-objective discrete Jaya algorithm was proposed to solve this problem.According to the problem's characteristics,a two-layer encoding method based on operation and machine was designed,and the population initialization method that balanced the processing time and energy consumption was adopted to generate a high-quality initial population.To transform the solution into a feasible and effective scheduling scheme,a greedy insertion decoding method with the preventive maintenance dynamic adjust-ment strategy and transportation time was designed.According to the different situations of the solution,the indi-vidual was updated by different ways.The effectiveness of the proposed algorithm was verified by comparing with the commonly used multi-objective optimization algorithms through 18 datasets with different scales.Experimental results showed that the proposed algorithm could effectively solve the flexible job-shop green scheduling considering transportation time and machine preventive maintenance.

flexible job-shop schedulingtransportation timepreventive maintenanceenergy consumptionmulti-objective discrete Jaya algorithm

张洪亮、徐公杰、鲍蔷、余乐安

展开 >

安徽工业大学管理科学与工程学院,安徽 马鞍山 243032

安徽工业大学复杂系统多学科管理与控制安徽普通高校重点实验室,安徽 马鞍山 243002

中国科学院大学经济与管理学院,北京 100190

柔性作业车间调度 运输时间 预维护 能耗 多目标离散Jaya算法

国家自然科学基金资助项目安徽省自然科学基金面上资助项目安徽省普通高校重点实验室开放基金资助项目

717720022208085MG181CS2021-ZD01

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(9)