首页|基于多层级金字塔信息融合的曝光矫正方法

基于多层级金字塔信息融合的曝光矫正方法

扫码查看
针对图像曝光不足和曝光过度的问题,设计了基于拉普拉斯金字塔结构的多层级信息融合曝光矫正网络,该网络每个层级的矫正模块采用类U-Net的编码器-解码器架构.为了提高矫正模块的特征提取能力并减少模型参数量,设计了基于ConvNeXt-tiny的多尺度卷积编码器作为基本特征提取单元.针对图像上采样过程中可能出现的棋盘格伪影问题,提出一种基于双线性插值和亚像素卷积的双路上采样模块.通过定量和定性验证,在大规模曝光矫正数据集上均取得较好的结果.定位销定位实验显示,在不同对比度阈值下,应用该网络进行图像增强显著提升了特征可重复性、定位精度和稳定性.
Exposure correction method based on multi-level pyramid information fusion
To address underexposure and overexposure in images,a multi-level information fusion exposure correction network based on the Laplacian pyramid structure was developed.Each network level adopted a U-Net-like encoder-decoder architecture in its correction module.A multi-scale convolutional encoder based on ConvNeXt-tiny was designed as the primary feature extraction unit to enhance feature extraction ability while reducing the mod-el's parameter count.To tackle the issue of checkerboard artifacts arising during image up-sampling,a dual-path up-sampling module combining bilinear interpolation and sub-pixel convolution was proposed.The network demonstrated effective results in both quantitative and qualitative validations on a large-scale exposure correction dataset.Dowel positioning experiments showed significant improvements in feature repeatability,positioning accura-cy,and stability at varying contrast thresholds when the network was applied to image enhancement.

information fusionexposure correctionmulti-scale convolutional encoderdual-path up-sampling

吴文江、刘信君、郑飂默、王诗宇、孙树杰

展开 >

中国科学院沈阳计算技术研究所,辽宁 沈阳 110168

沈阳中科数控技术股份有限公司,辽宁 沈阳 110168

中国科学院大学,北京 100049

烟台大学机电汽车工程学院,山东 烟台 264005

展开 >

信息融合 曝光矫正 多尺度卷积编码器 双路上采样

国家自然科学基金资助项目沈阳市中青年科技创新人才支持计划资助项目烟台市科技创新发展计划资助项目辽宁省博士科研启动基金计划资助项目

62002308RC2104882022JCYJ0362023-BS-214

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(10)