首页|融合生成对抗网络和难例挖掘的产品质量预测模型

融合生成对抗网络和难例挖掘的产品质量预测模型

扫码查看
针对连续性工业生产特点,重点关注类别不平衡造成的不合格样本召回率低问题.为了从高维数据提取有效特征,结合one class F-score和最小冗余最大相关性在特征提取方面的优势,有效降低特征维度并提取有价值特征;利用Wasserstein生成对抗网络(WGAN)方法扩增不合格样本数量;通过类别权重优化Focal Loss函数以提高困难样本识别率;通过轻量级梯度提升机算法结合阈值移动策略,构建基于WGAN数据增强和难例挖掘技术的质量预测模型(WGAN_Focal Loss_LGB(TM)).将所提模型应用于开源SECOM数据集,验证了所提方法的有效性.
Product quality prediction model based on generative adversarial network and hard case mining
According to the characteristics of process industries,the issue of low recall in identifying defective prod-ucts caused by imbalanced class was addressed.To extract effective features from high-dimensional data,the advan-tages of one class F-score and mRMR in feature extraction were combined to effectively reduce the feature dimension and extract valuable features.Then,the Wasserstein Generative Adversarial Network(WGAN)algorithm was em-ployed to augment the quantity of defective product.Subsequently,the focal loss function was optimized with class weights to enhance the recognition rate of hard case.Furthermore,leveraging the LightGBM algorithm in conjunction with a threshold movement strategy,a quality prediction model was constructed based on WGAN and hard case mining techniques.Finally,the proposed model was applied to the open-source SECOM dataset,and the result indicated that the presented approach effectively enhanced the recall rate of defective products while maintai-ning overall accuracy,which provided a scientific and practical method for in-depth exploration of the intricate map-ping relationship between critical production factors and product quality,as well as facilitating intelligent quality prediction efforts.

high-dimensional dataWasserstein generative adversarial networkFocal Loss functionhard case miningLightGBM algorithmthreshold movingproduct quality prediction

李剑锋、柏雪、赵春财、钱朋超、王洪涛、徐伟风

展开 >

中国计量大学经济与管理学院,浙江 杭州 310018

新凤鸣集团研究院质量管理部,浙江 桐乡 314513

杭州古珀医疗科技有限公司研发中心,浙江 杭州 311200

高维数据 Wasserstein生成式对抗网络 Focal Loss函数 难例挖掘 轻量级梯度提升机算法 阈值移动 产品质量预测

国家自然科学基金面上资助项目国家自然科学青年基金资助项目

7197217242001201

2024

计算机集成制造系统
中国兵器工业集团第210研究所

计算机集成制造系统

CSTPCD北大核心
影响因子:1.092
ISSN:1006-5911
年,卷(期):2024.30(10)