首页|基于深度学习的图像数据增强研究综述

基于深度学习的图像数据增强研究综述

扫码查看
近年来,深度学习在图像分类、目标检测、图像分割等诸多计算机视觉任务中都取得了出色的性能表现.深度神经网络通常依靠大量的训练数据来避免过拟合,因此,出色的性能背后离不开海量图像数据的支持.但在很多实际应用场景中,通常很难获取到足够的图像数据,并且数据的收集也是昂贵且耗时的.图像数据增强的出现很好地缓解了数据不足的问题,作为增加训练数量、提升数据质量和多样性的有效途径,数据增强已成为深度学习模型在图像数据上成功应用的必要组成部分,理解现有算法有助于选择适合的方法以及开发新算法.文中阐述了图像数据增强的研究动机,对众多的数据增强算法进行了系统分类,详细分析了每一类数据增强算法;随后指出数据增强算法设计时的一些注意事项及其应用范围,并通过3种计算机视觉任务证明了数据增强的有效性;最后总结全文并对数据增强未来的研究方向进行展望.
Survey of Image Data Augmentation Techniques Based on Deep Learning
In recent years,deep learning has demonstrated excellent performance in many computer vision tasks such as image classification,object detection,and image segmentation.Deep neural networks usually rely on a large amount of training data to avoid overfitting,so excellent performance is inseparable from the support of massive image data.However,in many real-world applications,it is often difficult to obtain sufficient image data,and data collection is also expensive and time-consuming.The emergence of image data augmentation has effectively alleviated the problem of insufficient data,and as an effective way to increase the quantity,quality,and diversity of training data,data augmentation has become a necessary component for the successful appli-cation of deep learning models on image data.Understanding existing algorithms can help choose appropriate methods and develop new algorithms.This paper elaborates on the research motivation of image data augmentation,systematically classifies numerous data augmentation algorithms,analyzes each type of data augmentation algorithm in detail,and then points out some considera-tions in the design of data augmentation algorithms and their application scope.The effectiveness of data augmentation is demon-strated through three computer vision tasks,and finally,this paper summarizes and proposes some prospects for future research directions of data augmentation.

Image augmentationDeep learningData augmentationComputer visionArtificial intelligenceGenerative adversarial network

孙书魁、范菁、孙中强、曲金帅、代婷婷

展开 >

云南民族大学电气信息工程学院 昆明 650000

云南民族大学云南省高校信息与通信安全灾备重点实验室 昆明 650000

苏州大学计算机科学与技术学院 江苏苏州 215000

图像增强 深度学习 数据增强 计算机视觉 人工智能 生成对抗网络

国家自然科学基金云南省教育厅科学研究基金云南民族大学硕士研究生科研创新基金

615400632023Y04992022SKY004

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(1)
  • 2
  • 3