首页|雨滴实地拍摄基准图像数据集及评估

雨滴实地拍摄基准图像数据集及评估

扫码查看
在雨天透过玻璃窗拍摄时,附着在玻璃表面的雨滴通常会出现在图像中,这不仅降低了图像的可见度,还会使许多计算视觉算法无法正常工作.图像雨滴去除研究,是指从这类雨天图像中去除雨滴的具体科研研究.该研究领域面临着很大的挑战,主要原因是自然界中的雨滴形态多种多样、各不相同,不同透明度的雨滴也会影响背景图像的成像质量,从而增加了识别并去除雨滴的困难度,对去雨滴算法的性能提升造成了负面影响.为了方便研究者全面了解该领域,将从以下两个方面详尽介绍单幅图像去雨滴研究:单幅图像去雨滴算法和单幅图像联合去雨算法;同时也对该领域的所有算法进行了总结与评估.在基于深度学习的方法中,算法的性能往往受限于数据集的质量,但现有的雨滴数据集中均存在雨滴图像质量不高、图像数量不足等常见情况.为此,建立了雨滴实地拍摄基准图像数据集(HEMC),在拍摄过程中,尽量避免相机抖动、窗户反射和其他外界条件的干扰,从而提高了数据集中训练集的图像质量和测试集的精准度,进而间接提升了算法性能.同时,利用主观视觉效果以及客观指标对数据集进行了多方面的评估,实验结果展现了 HEMC数据集中图像的多样性以及客观指标的稳定性.此外,通过对雨滴数据集间的交叉验证,证实了 HEMC数据集在已有去雨滴算法中的通用性与稳定性.
Raindrop In-Situ Captured Benchmark Image Dataset and Evaluation
When taking photos through glass windows in rainy days,the raindrops adhered to glass surfaces are usually presented in the images,which not only degrade the visibility of the image but also prevent many computer vision algorithms from functio-ning properly.The research on raindrop removal is a scientific research to remove raindrops from such rainy images.The single-image raindrop removal research presents significant challenges due to the diverse and unique forms of raindrops found in nature.The varying transparency of raindrops further complicates the task of removing raindrop artifacts and degrades the imaging quali-ty of background scenes,adversely impacting the performance of existing raindrop removal algorithms.To facilitate a comprehen-sive understanding of this research area,this paper provides a detailed introduction to single-image raindrop removal,covering two main aspects:single-image raindrop removal algorithms and joint raindrop removal algorithms for single images.Additionally,a summary and evaluation of existing algorithms in this field are presented.However,the performance of the algorithm is often li-mited by the quality and quantity of the dataset in deep learning based methods,but in existing raindrop datasets,common situa-tions such as low-quality raindrop images and insufficient image quantities exist.In existing raindrop datasets,there are common situations such as poor quality of raindrop images and insufficient number of raindrop images.This paper proposes a higher edu-cation megacenter(HEMC)dataset.Camera shake,window reflections and other external disturbances are avoided as much as possible thus improving the image quality of the training set and accuracy of the test set and indirectly improving the performance of the raindrop removal methods.HEMC is evaluated in various aspects using competent visual effects and objective metrics.Ex-perimental results show the diversity of the raindrop images in HEMC and stability of the objective metrics.In addition,the re-sults verify the universality and stability of the HEMC in the raindrop removal methods.

Image raindrop removalRaindrop image datasetDeep learningImage evaluation metric

陈天一、薛文、全宇晖、许勇

展开 >

华南理工大学计算机科学与工程学院 广州 510006

鹏城实验室 广东深圳 518005

图像去雨滴 雨滴图像数据集 深度学习 图像评价指标

国家自然科学基金

62072188

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(1)
  • 23