首页|基于伪标签的弱监督显著特征增强目标检测方法

基于伪标签的弱监督显著特征增强目标检测方法

扫码查看
显著性目标检测旨在检测图像中最明显的区域.传统的基于单一标签的算法不可避免地受到所采用的细化算法的影响,表现出偏见特征,从而进一步影响了显著性网络的检测性能.针对这一问题,基于多指令滤波器结构,提出了 一种基于伪标签的弱监督显著特征增强 目标检测方法FeaEM,通过从多个标签中集成更全面和准确的显著性线索,从而有效提升目标检测的性能.FeaEM方法的核心是引入一个新的多指令滤波器结构,利用多个伪标签来避免单一标签带来的负面影响;通过在指令滤波器中引入特征选择机制,从噪声伪标签中提取和过滤更准确的显著性线索,从而学习更多有效的具有代表性的特征;同时,针对现有的弱监督目标检测方法对输入图像的尺度十分敏感,同一图像的不同尺寸输入的预测结构存在较大偏差问题,通过引入尺度特征融合机制,以确保在输入不同尺寸的同一图像时,能输出一致的显著图,进而有效提高模型的尺度泛化能力.在多个数据集上进行的大量实验表明,所提出的FeaEM方法优于最具代表性的方法.
FeaEM:Feature Enhancement-based Method for Weakly Supervised Salient Object Detection via Multiple Pseudo Labels
Salient object detection is designed to detect the most obvious areas of an image.The traditional method based on single label is inevitably affected by the refinement algorithm and shows bias characteristics,which further affects the detection perfor-mance of saliency network.To solve this problem,based on the structure of multi-instruction filter,this paper proposes a feature enhancement-based method for weakly supervised salient object detection via multiple pseudo labels(FeaEM),which integrates more comprehensive and accurate saliency cues from multiple labels to effectively improve the performance of object detection.The core of FeaEM method is to introduce a new multi-instruction filter structure and use multiple pseudo-labels to avoid the negative effects of a single label.By introducing the feature selection mechanism into the instruction filter,more accurate signifi-cance clues are extracted and filtered from the noise false label,so as to learn more effective representative features.At the same time,the existing weak supervised object detection methods are very sensitive to the scale of the input image,and the prediction structure of the input of different sizes of the same image has a large deviation.The scale feature fusion mechanism is introduced to ensure that the output of the same image of different sizes is consistent,so as to effectively improve the scale generalization ability of the model.A large number of experiments on multiple data sets show that the FeaEM method proposed in this paper is superior to the most representative methods.

Deep learningObject detectionSalientPseudo labelsAttention mechanism

史殿习、刘洋洋、宋林娜、谭杰夫、周晨磊、张轶

展开 >

天津(滨海)人工智能创新中心 天津 300457

智能博弈与决策实验室 北京 100091

国防科技大学计算机学院 长沙 410073

深度学习 目标检测 显著性 伪标签 注意力机制

天津市滨海新区合作共建研发平台科技项目国家自然科学基金

BHXQKJXMPT-RGZNJMZX-201900191948303

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(1)
  • 41