首页|基于双重动态记忆网络的弱监督视频异常检测

基于双重动态记忆网络的弱监督视频异常检测

扫码查看
视频异常检测需从整段视频中识别帧级别的异常行为.弱监督方法使用正常与异常视频,辅以视频级别标签训练模型,相比无监督视方法展现出了更优越的性能.然而,目前的弱监督视频异常检测方法无法记录视频长期模态,且部分方法为了获得更优的检测效果,利用了未来帧的信息,导致无法在线应用.为此,文中首次提出了一种基于双重动态记忆网络的弱监督视频异常检测方法,通过设计包含两个记忆模块的记忆网络来分别记录视频中长期的正常和异常模态.为了实现视频特征和记忆项的协同更新,采用读操作基于记忆模块中的记忆项对视频帧的特征进行增强,采用写操作基于视频帧特征对记忆项的内容进行更新,同时记忆项的数量在训练的过程中会动态调整从而适应不同视频监控场景的需求.在训练时,设计模态分离损失增加记忆项之间的区分度.在测试时,仅需要记忆项而不需要未来视频帧的参与,从而实现准确的在线检测.在两个公开的弱监督视频异常检测数据集上的实验结果表明,所提方法优于所有在线应用的方法,相比只能离线应用的方法也具有很强的竞争力.
Weakly Supervised Video Anomaly Detection Based on Dual Dynamic Memory Network
Video anomaly detection aims to identify frame-level abnormal behaviors from the video.The weakly supervised me-thods use both normal and abnormal video supplemented by the video-level labels for training,which show better performance than the unsupervised methods.However,the current weakly supervised video anomaly detection methods cannot record the long-term mode of the video.At the same time,some methods use the information of future frames to achieve better detection results,which makes it impossible to apply online.For this reason,a weakly supervised video anomaly detection method based on dual dy-namic memory network is proposed for the first time in this paper.The memory network containing two memory modules is de-signed to record the normal and abnormal modes of video in the long term respectively.In order to realize the collaborative update of video features and memory items,the read operation is used to enhance the features of video frames based on the memory items in the memory module,and the write operation is used to update the contents of memory items based on the features of video frames.At the same time,the number of memory items will be dynamically adjusted during the training process to meet the needs of different video monitoring scenarios.In training,a modality separation loss is proposed to increase the discrimination between memory items.During the test,only memory items are needed without the participation of future video frames,so that accurate online detection can be achieved.Experimental results on two public weakly supervised video anomaly detection datasets show that the proposed method is superior to all online application methods,and also has strong competitiveness compared with offline application methods.

Video anomaly detectionWeakly supervised learningMemory networkMultiple instance learningDeep learning

周文浩、胡宏涛、陈旭、赵春晖

展开 >

浙江大学控制科学与工程学院 杭州 310027

视频异常检测 弱监督学习 记忆网络 多示例学习 深度学习

国家自然科学基金杰出青年基金NSFC——浙江两化融合联合基金

62125306U1709211

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(1)
  • 1
  • 1
  • 1