首页|机器学习公平性指标:现状、挑战和展望

机器学习公平性指标:现状、挑战和展望

扫码查看
随着机器学习应用的日益普及,机器学习公平性问题引起了学术界和工业界的广泛关注,成为了可信人工智能的重要组成部分.为了评估和改善机器学习应用的公平性,研究人员提出了一系列公平性指标,这些指标有助于保障机器学习模型在不同个体、群体间的公平决策,并为改善和优化模型提供指导.但各界对于指标之间的区别与联系仍没有形成共识,对不同场景、不同任务的公平性定义没有明确的划分,公平性指标缺乏完善的分类体系.文中对公平性指标进行了全面的整理和归类,从指标的数学定义出发,根据是否基于概率统计将公平性指标分为两类,然后分别对这两类指标进行进一步的细粒度划分和阐述.为了便于读者理解和运用,结合一个实际案例,从适用场景和实现条件等方面指出各类指标的优势和面临的挑战,还结合数学定义讨论了指标之间的关系,并对未来趋势进行了展望.
Fairness Metrics of Machine Learning:Review of Status,Challenges and Future Directions
With the increasing popularity of machine learning applications,fairness of machine learning has attracted widespread attention from academia and industry,and has become an important component of trust-worthy artificial intelligence.To evaluate and improve the fairness of machine learning applications,a series of fairness metrics have been proposed by researchers.These metrics help to ensure fair decision-making of machine learning models among different individuals and groups,and provide gui-dance for improving and optimizing the model.However,there is still no consensus on the difference and correlation between these metrics,which are not clearly divided in different scenarios and tasks.This means that these fairness metrics lack a compre-hensive classification system.In this paper,the fairness metrics are comprehensively organized and classified.Starting from the mathematical definition of these metrics,they are divided into two categories according to whether they are based on probability statistics.The two types of metrics are then further divided and elaborated separately.In order to facilitate readers'understan-ding and application,combined with a practical case,the advantages and challenges of various metrics are pointed out in terms of application scenarios and implementation conditions,and the relationship between metrics is also discussed in conjunction with mathematical concepts,and possible future research directions are prospected.

Machine learningFairness of machine learningTrust-worthy artificial intelligenceFairness metricsFair decision

张文琼、李云

展开 >

南京邮电大学计算机学院、软件学院、网络空间安全学院 南京 210023

江苏省大数据安全与智能处理重点实验室 南京 210023

机器学习 机器学习公平性 可信人工智能 公平性指标 公平决策

江苏省高校自然科学基金重大项目

21KJA520003

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(1)
  • 1