首页|基于知识图谱与用户兴趣的推荐算法

基于知识图谱与用户兴趣的推荐算法

扫码查看
为了解决协同过滤推荐算法中存在的冷启动以及数据稀疏性等问题,文中引入了具有丰富语义信息和路径信息的知识图谱.基于其结构特征,将图神经网络应用于知识图谱的推荐算法得到了研究者的青睐.推荐算法的核心在于获取物品特征和用户特征,然而,该方面研究的重点在于更好地表达物品特征,而忽略了用户特征的表示.文中在知识图谱图神经网络的基础上,提出了一种基于知识图谱与用户兴趣的推荐算法.该算法通过引入一个独立的用户兴趣捕获模块,来学习用户历史信息,引入了用户兴趣,使得推荐算法在用户和物品两个方面都得到了良好表征.实验结果表明,在MovieLens数据集上,基于知识图谱与用户兴趣的推荐算法实现了数据的充分利用,具有良好的效果,对推荐准确性起到了促进作用.
Knowledge Graph and User Interest Based Recommendation Algorithm
In order to solve the problems of cold start and data sparsity in the collaborative filtering recommendation algorithm,the knowledge graph with rich semantic information and path information is introduced in this paper.Based on its graph struc-ture,the recommendation algorithm which applies graph neural network to knowledge graph is favored by researchers.The core of the recommendation algorithm is to obtain item features and user features,however,research in this area focuses on better ex-pressing item features and ignoring the representation of user features.Based on the graph neural network,a recommendation al-gorithm based on knowledge graph and user interest is proposed.The algorithm constructs user interest by introducing an inde-pendent user interest capture module,learning user historical information and modeling user interest,so that it is well represented in both users and items.Experimental results show that on the MovieLens dataset,the recommendation algorithm based on knowledge graph and user interest realizes the full use of data,has good results and promotes the accuracy of recommendation.

Recommendation algorithmKnowledge graphGraph neural networksUser interest

许天月、柳先辉、赵卫东

展开 >

同济大学电子与信息工程学院 上海 201804

同济大学电子与信息工程学院CAD研究中心 上海 201804

推荐算法 知识图谱 图神经网络 用户兴趣

国家重点研发计划

2022YFB3305700

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(2)
  • 31