首页|基于组合结构的逻辑回归点击预测算法

基于组合结构的逻辑回归点击预测算法

扫码查看
随着互联网和广告平台的飞速发展,面对海量的广告信息,为了提升用户点击率,提出一种改进的基于组合结构的逻辑回归点击预测算法LRCS(Logical Regression of Combination Structure).该算法基于不同类别特征广告受众可能不同的特点,首先,采用FM进行特征组合,产生两类组合特征;其次,将一类特征组合作为聚类算法的输入进行聚类;最后,将另一类特征组合输入由聚类产生的分段GBDT+逻辑回归组合的模型中进行预测.在两个公开数据集中进行了多角度验证,结果表明与其他几类常用的点击预测算法相比,LRCS在点击预测上有一定的性能提升.
Logical Regression Click Prediction Algorithm Based on Combination Structure
With the rapid development of the Internet and advertising platforms,in the face of massive advertising information,in order to improve the user click rate,an improved logical regression click prediction algorithm,logical regression of combination structure(LRCS)based on composite structure is proposed.The algorithm is based on different types of features,which may have different audiences.First,FM is used to combine features to generate two types of combined features.Secondly,a kind of feature combination is used as clustering algorithm for clustering.Finally,another type of feature combination is input into the segmented GBDT+logical regression combination model generated by clustering for prediction.Through multi angle verification in two pub-lic datasets,and compared with other commonly used click prediction algorithms,it shows that LRCS has a certain performance improvement in click prediction.

Logical regressionFeature combinationClusteringCombination recommendationArtificial intelligenceIntelligent manufacturing

郭尚志、廖晓峰、鲜开义

展开 >

重庆大学计算机学院 重庆 400030

逻辑回归 特征组合 聚类 组合推荐 人工智能 智能制造

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(2)
  • 31