首页|基于自注意力机制和多尺度输入输出的医学图像分割算法

基于自注意力机制和多尺度输入输出的医学图像分割算法

扫码查看
更精细化的糖尿病性视网膜病变眼底图像分割结果,可以更好地辅助医生进行诊断.大规模高分辨率的分割数据集的出现,为更精细化的分割提供了有利条件.基于U-Net的主流分割网络,使用基于局部运算的卷积操作进行像素预测时无法充分挖掘全局信息,网络模型采用单输入单输出的结构,难以获取多尺度特征信息.为了最大程度地利用现有的大规模高分辨率的眼底图像病灶分割数据集,实现更精细化的分割,需要设计更好的分割方法.文中基于自注意力机制和多尺度输入输出结构对U-Net进行改造,提出了一种新的分割网络SAM-Net,用 自注意力模块代替传统卷积模块,增大网络获取全局信息的能力,引入多尺度输入和多尺度输出结构,使网络更容易获取多尺度特征信息.使用图片切片方法来缩小模型的输入尺寸,防止神经网络模型因为输入图片像素过大而导致训练难度增大.最终在IDRiD数据集和FGADR数据集上进行实验,结果表明,SAM-Net可以达到比其他方法更优的性能.
Medical Image Segmentation Algorithm Based on Self-attention and Multi-scale Input-Output
Refined fundus image segmentation results of diabetic retinopathy can better assist doctors in diagnosis.The appea-rance of large scale and high resolution segmentation data sets provides favorable conditions for more refined segmentation.The mainstream segmentation network based on U-Net,using convolution operation based on local operation,cannot fully excavate global information when making pixel prediction.The network model adopts single-input single-output structure,which makes it difficult to obtain multi-scale feature information.In order to maximize the use of existing large-scale high-resolution fundus image focal segmentation data sets and achieve more refined segmentation,better segmentation methods need to be designed.In this paper,U-Net is transformed based on the self-attention mechanism and multi-scale input/output structure,and a new seg-mentation network,SAM-Net,is proposed.The self-attention module is used to replace the traditional convolutional module,and the ability of the network to obtain global information is increased.The multi-scale input and multi-scale output structures are in-troduced to make it easier for the network to obtain multi-scale feature information.The image slicing method is used to reduce the input size of the model,so as to prevent the training difficulty of the neural network model from increasing due to the large pixel of the input picture.Finally,experimental results on IDRiD and FGADR data sets show that SAM-Net can achieve better performance than other methods.

U-NetSelf-attentionDiabetic retinopathySegmentationNeural network

丁天舒、陈媛媛

展开 >

四川大学计算机学院 成都 610065

U-Net 自注意力机制 糖尿病性视网膜病变 分割 神经网络

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(2)
  • 37