首页|基于扩张卷积条件生成对抗网络的红外小目标检测

基于扩张卷积条件生成对抗网络的红外小目标检测

扫码查看
基于深度神经网络的 目标检测方法凭借自身强大的建模能力,在通用 目标检测任务中取得了良好的表现.然而,在红外小目标信号弱、像素小的本质特征的影响下,深度神经网络层次的加深和池化操作的大量使用导致小目标语义信息丢失,使得现有方法的检测效果并不理想.文中从红外小 目标特性这一关键问题出发,提出了一种新颖的基于扩张卷积条件生成对抗网络的 目标检测算法.所提方法应用扩张卷积设计了生成网络,充分利用上下文信息建立层与层之间的关联,将红外小 目标更多的语义信息保留到深层网络中,增强目标特征,进而提高检测性能.此外,设计了融合通道与空间维度的混合注意力模块,在特征提取时有选择性地放大目标信息,抑制背景信息;设计了 自注意关联模块处理层与层之间信息融合过程中产生的语义冲突问题.文中使用多种评价指标将所提网络模型与 目前先进的其他红外小目标检测方法进行对比,证明了该方法在复杂背景下目标检测性能的优越性.在公开的SIRST数据集上,所提模型的F分数为64.70%,相比传统方法提高了 8.29%,相比深度学习方法提高了 7.29%;在公开的ISOS数据集上,所提模型的F分数为64.54%,相比传统方法提高了 23.59%,相比深度学习方法提高了 6.58%.
Infrared Small Target Detection Based on Dilated Convolutional Conditional Generative Adversarial Networks
Deep-learning based object detection methods have achieved great performance in general object detection tasks by vir-tue of their powerful modeling capabilities.However,the design of deeper network and the abuse of pooling operations also lead to semantic information loss which suppress their performance when detecting infrared small targets with low signal-noise-ratio and small pixel essential features.This paper proposes a novel infrared small target detection algorithm based on dilated convolu-tion conditional generative adversarial network.A dilated convolution stacked generative network makes full use of context infor-mation to establish layer-to-layer correlations and facilitate semantic information retainment of infrared small targets in the deep network.In addition,the generative network integrates the channel-space-mixed attention module which selectively amplifies tar-get information and suppresses background clusters.Furthermore,a self-attention association module is proposed to deal with se-mantic conflict generated during the fusion process between layers.A variety of evaluation metrics are used to compare the pro-posed method with other state-of-the-arts at present to demonstrate the superiority of the proposed method in complex back-grounds.On the public SIRST dataset,the F score of the proposed model is 64.70%which is 8.29%higher than the traditional method and 7.29%higher than the deep learning method.On the public ISOS dataset,the F score is 64.54%,which is 23.59%higher than the traditional method and 6.58%higher than the deep learning method.

Infrared small target detectionConditional generative adversarial networkFeature fusionAttention mechanismDi-lated convolution

张国栋、陈志华、盛斌

展开 >

华东理工大学信息科学与工程学院 上海 200237

上海交通大学电子信息与电气工程学院 上海 200240

红外小目标检测 条件生成对抗网络 特征融合 注意力机制 扩张卷积

国家自然科学基金空间智能控制技术实验室开放基金

62272164HTKJ2022KL502010

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(2)
  • 40