首页|基于递归门控卷积的遥感图像超分辨率研究

基于递归门控卷积的遥感图像超分辨率研究

扫码查看
由于受到硬件条件的限制,通常难以获得具有高分辨率(HR)的遥感图像.利用单幅图像超分辨率(SISR)技术对低分辨率(LR)遥感图像进行超分辨率重建是获取高分辨率遥感图像的常用方法.近年来,在图像超分辨率领域引入的卷积神经网络(CNN)改进了图像重建性能.然而,现有的基于CNN的超分辨率模型通常使用低阶注意力机制提取深层特征,其表征能力有待提高,且常规卷积的感受野有限,缺乏对远距离依赖关系的学习.为了解决以上问题,提出了一种基于递归门控卷积的遥感图像超分辨率方法RGCSR.该方法引入递归门控卷积gnConv学习全局依赖和局部细节,通过高阶空间交互来获取高阶特征.首先,使用由高阶交互子模块(HorBlock)和前馈神经网络(FFN)组成的高阶交互——前馈神经网络模块(HFB)提取高阶特征.其次,利用由通道注意力(CA)和gnConv构建的特征优化模块(FOB)优化各个中间模块的输出特征.最后,在多个数据集上的对比结果表明,RGCSR比现有的基于CNN的超分辨率方法具备更好的重建性能和视觉效果.
Recursive Gated Convolution Based Super-resolution Network for Remote Sensing Images
Due to hardware manufacturing constraints,it is usually difficult to obtain high-resolution(HR)images in the area of remote sensing.From low resolution remote-sensing image to reconstruct high-resolution(HR)image via single-image super-re-solution(SISR)technique is a common method.Recently,the convolutional neural network(CNN)was introduced to the field of super-resolution image reconstruction,and it effectively improved the image reconstruction performance.However,the classic CNN-based approaches typically use low-order attention to extract deep features,which limites its reconstructing ability.More-over,the receptive field is limited,which lacks the ability to learn long-range dependency.To solve the above problems,a recursive gated convolution-based super-resolution method for remote sensing images(RGCSR)is proposed.The RGCSR introduces recur-sive gated convolution(gnConv)to learn global dependencies and local details,and high-order features are acquired by high-order spatial interactions.Firstly,a high-order interaction—feedforward neural network(HFB)consisting of a high-order interaction sub-module(HorBlock)and a feedforward neural network(FFN)is applied to extract high-order features.Then,a feature optimi-zation module(FOB)contains channel attention(CA)and gn Conv is used to optimize the output features of each intermediate module.Finally,the comparison results on multiple datasets show that RGCSR has better reconstruction and visualization per-formances than existing CNN-based solutions.

Recursive gated convolutionHigh-order spatial interactionChannel attentionRemote sensing imagesSuper-resolu-tion

刘长新、吴宁、胡俐蕊、高霸、高学山

展开 >

广西大学计算机与电子信息学院 南宁 530004

广西海洋工程装备与技术重点实验室(北部湾大学) 广西钦州 535011

北部湾大学电子与信息工程学院 广西钦州 535011

北部湾大学机械与船舶海洋工程学院 广西钦州 535011

展开 >

递归门控卷积 高阶空间交互 通道注意力 遥感图像 超分辨率

国家自然科学基金广西重点研发计划

619610042021AB10030

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(2)
  • 47