首页|基于对比图学习的跨文档虚假信息检测

基于对比图学习的跨文档虚假信息检测

扫码查看
当前,网络上充斥着大量虚假信息,严重阻碍了社会各行业的正常运转,如何精准检测虚假信息成为了亟待解决的问题.现有研究主要从账户特征、文本内容和多模态3个角度开展工作,但大多忽视了虚假信息赖以传播的关键特征(即内容新奇性),仅是孤立地分析判别目标信息的真实性,未能把握舆论环境的特征.因此,提出了一种基于对比图学习的跨文档虚假信息检测方法(Contrastive Graph Learning,CAL),聚焦于内容新奇性,主要包含两个关键模块:对比学习模块和异构图模块.前者致力于扩大客观事实与虚假信息在向量空间中的表示差异性;后者包含实体、事件、事件集、句子和文档5种类型实体,尽可能向实体表示中注入舆论环境的语义特征.最后,在IED,TL17和Crisis这3个数据集上,在文档级和事件级这两个层次上开展了相关实验,CAL在所有测试中均取得了最优的结果,验证了所提方法的有效性.
Contrastive Graph Learning for Cross-document Misinformation Detection
Misinformation proliferates on the Internet,undermining the normal functioning of various industries.Detecting false-hoods accurately has therefore become an urgent challenge.Existing research on this task focuses primarily on three aspects:ac-count traits,textual content,and multimodality.However,most methods overlook the key attribute of misinformation diffusion the novelty of content.They analyze the veracity of target claims in isolation,failing to capture public opinion dynamics.To ad-dress this issue,this paper proposes a cross-document misinformation detection framework called contrastive graph learning(CAL).CAL focuses on content novelty and comprises two key components:a contrastive learning module and a heterogeneous graph module.The former expands the representational difference between factual and false claims,and the latter encompasses five entity types:words,events,event sets,sentences,and documents.It injects semantic features of the public discourse into enti-ty embeddings.We evaluate CAL on the IED,TL17,and Crisis datasets at both document and event levels.CGL achieves state-of-the-art performance,which verifies the efficacy of its design.It provides a robust solution for combating misinformation by mode-ling novelty and environmental context.

Cross-document misinformation detectionContrastive learningHeterogeneous graphEvent-level detection

廖劲智、赵和伟、连小童、纪文亮、石海明、赵翔

展开 >

国防大学军事管理学院 北京 100000

国防科技大学系统工程学院 长沙 410072

跨文档虚假信息检测 对比学习 异构图 事件级检测

国家重点研发计划国家自然科学基金国家自然科学基金

2022YFB31026007230128462272469

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(3)
  • 42